Conservative screening and weighting in Shariah-Compliant Equity Investing
Executive Summary

Conservative Shariah equity investments puts compliance with Shariah principles first. Those principles guide the investment decisions both at the stage of screening the universe to select the investable stocks, and when choosing their portfolio weights. In addition to being conservative in terms of translating Shariah principles in investment decisions, the resulting portfolio benefits also from conservativeness in the weight allocation. Over the medium to long run, we find that equally weighted and low risk weighted Shariah compliant portfolios outperform their market capitalization weighted counterpart. We obtain these results in two papers.

In the first paper, researchers at the Finvex Quantitative Strategies team propose to use a double-sword in screening stocks for Shariah compliance. In addition to the traditional approach of excluding firms that have had excessive income from interest, they recommend to use data science for excluding also the firms that are expected to have excessive income from interest over the investment horizon. The combination of a backward and forward looking approach leads to conservative screening of the universe and ensures the Shariah-compliant investor stays away from investing in firms with excessive revenues from interest.

The second paper explains why the choice of weighting method matters for a Shariah-compliant investor. Our team shows that, when there is mispricing, investors using equal-weighting or low risk weighting are less likely to invest in stocks with speculation risk. Moreover, for the universe of Shariah compliant S&P 500 stocks analyzed, the use of smart beta weighting improves the secondary objective of financial performance.

I wish you a pleasant reading and please don’t hesitate to contact us for any further inquiries.

Kind regards,

Stefan Hartmann,

Head of Quantitative Research, Finvex
Authors

Özgür Arslan-Ayaydın is the Clinical Associate Professor of Finance in University of Illinois at Chicago (UIC). She published articles in more than dozen journals including Journal of Banking and Finance, Emerging Markets Review and Review of Quantitative Finance and Accounting. She is also editor of two books in Energy Finance. Dr. Arslan is also an external evaluator for European Commission. In 2016 Dr. Arslan-Ayaydın received UIC’s Silver Circle Teaching Award.

Kris Boudt is associate professor of finance and econometrics at Vrije Universiteit Brussel and Amsterdam, and a lecturer at Datacamp. Since 2011, he is the research partner at Finvex, a leading financial investment designer. Kris Boudt is an expert in portfolio analysis and has contributed to the development of several smart beta equity indices. He has published his research in the Journal of Portfolio Management, Journal of Econometrics and the Review of Finance, among others. He has a passion for developing financial econometrics tools in R.

Muhammad Wajid Raza is assistant professor of finance at Shaheed Benazir Bhutto University, Sheringel, Dir, Pakistan. Since 2015, he is combining this role with a doctoral research fellowship at Vrije Universiteit Brussel. Wajid Raja is an expert in Islamic finance in general, and Shariah-compliant equity investing in particular. For his excellence in teaching, he received the faculty development award from the Higher Education Commission in Pakistan. He is also working as social activist in the field of education and is passionate about oil painting.

Marjan Wauters is postdoctoral researcher at Vrije Universiteit Brussel. In 2016, she obtained a PhD at KU Leuven and Vrije Universiteit Brussels. Her research focusses on modelling, characterizing and exploiting time-variation in financial risk. She has published papers on portfolio risk management and received a best paper award and has been nominated for a Swiss Derivative Award.
Avoiding interest-based revenues while constructing Shariah-compliant portfolios: False negatives and false positives

Özgur Arslan-Ayaydina, Kris Boudtb,c,d, Muhammad Wajid Razab,e

aDepartment of Finance, University of Illinois at Chicago, USA
bSolvay Business School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
cFaculty of Economics and Business, Vrije Universiteit Amsterdam, The Netherlands
dQuantitative Strategies, Finvex
eShaheed Benazir Bhutto University, Dir, Pakistan

Abstract

Shariah law prohibits investments in equities of companies for which interest income is a considerable source of revenue. In practice this is often enforced by prohibiting investments in firms for which the reported interest-based revenues exceed a predetermined percentage of the firm’s total revenue. We investigate an alternative approach that consists of avoiding firms that are expected to have interest-based revenues exceeding the acceptable threshold over the investment horizon. We compare the traditional backward looking approach with the proposed forward looking analysis for the sample of S&P 500 firms over the period 1984-2015. Our results show that the forward looking approach outperforms the backward looking approach in terms of both less false positives (firms classified as compliant, when they are not) and false negatives (firms classified as not compliant, when they are compliant).

Keywords: Interest-based revenues, Islamic finance, Misclassification, Shariah screening

aWe are grateful to Dawood Ashraf, Giang Nguyen and Marjan Wauters for helpful comments and suggestions. We thank Shaheed Benazir Bhutto University Dir, Pakistan and the Higher Education Commission, Pakistan for providing financial support.

Correspondence to: Muhammad Wajid Raza, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
Email: wajidrazaum@sbbu.edu.pk. Tel: +322629203.

Email addresses: orslan@uic.edu (Özgur Arslan-Ayaydin), kris.boudt@vub.be (Kris Boudt), wajidrazaum@sbbu.edu.pk (Muhammad Wajid Raza)

Finvex Research Paper May 30, 2017
1. Introduction

“Riba (interest) is prohibited because it prevents people from undertaking real economic activities.”

- Imam Al-Ghazali (1058-1111), intellectual jurist and philosopher

When investing in stocks, a Shariah-compliant investor needs to consider not only financial risk and return of the equity investment, but also the business activities and the type of revenues of the firms issuing those stocks. As such, the Shariah-compliant investor can not invest in firms for which the main business activities are haram (such as gambling, alcohol, tobacco or swine production). Moreover, in Islamic banking and finance, receiving interest in terms of a guaranteed rate of return without sharing the risk is deemed as riba. This means in excess, and violates the Shariah principles of equity, fairness and justice. A Shariah-compliant investor is therefore required to avoid investing in firms for which a considerable portion of its revenues are interest-based. In practice, this requires to use classification tools that need to be well designed to ensure that the Shariah-compliant investor does not implicitly support riba. In the remainder of the paper, we call the term “Shariah screening” when an investor excludes firms from her investment portfolio in order to avoid violating the Shariah principles.¹

Under perfect foresight, the classification problem is simple: exclude firms that over the investment horizon receive a revenue from interest payments that exceeds a pre-defined multiple of the total revenues. The consensus is that the value of this threshold is 5% (Ayub, 2009). Of course, at the time of the investment, the investor does not know the future interest-based revenues. The traditional solution to this problem is to classify a firm based on the most recently observed interest-based revenues. This is a backward looking approach, that is widespread among Shariah scholars and managers of Shariah compliant equity portfolios. Specifically, they compare the current value of the firm’s interest-based revenues to that of total revenues. This approach has the complication that it ignores the dynamics in the underlying revenues.² The same practice is adopted by numerous studies in academic research (see, e.g., Derigs and Marzban, 2009; Nainggolan et al., 2015; Ashraf, 2016).

¹Shariah-compliant equity investors also use screens based on the firm’s liquidity and leverage. These screens have the same classification problem as the one we study for interest-based revenues. See e.g. Derigs and Marzban (2009) for an overview of the various screens used in Shariah-compliant equity investing.
²Examples include the investment rules in the prospectus issued by the Dow Jones Islamic Market indices “DJIM”, the S&P Shariah indices and the FTSE Shariah indices.
In this paper, we note that the traditional screening approach provides an answer to the wrong question. This approach indicates whether the firm has had substantial interest-based revenues over the most recent period, while the truly relevant question in investing is whether the firm will have interest-based revenues over the investment horizon. An answer to the latter question ensures that the equity investors conform to the Shariah principles. Its implementation requires a forward looking approach, which we develop in this paper using time series model based predictions. It is further also important to quantify the errors in classification. We define a “false positive” as an error of qualifying a firm as investable, while in fact that firm’s interest based revenues exceed the threshold over the investment horizon. The reverse is called a “false negative”, namely the error of classifying a firm as not investable, while in fact it does not violate the restriction on interest-based revenues over the investment horizon. Clearly, a false positive is more detrimental for the Shariah-compliant investor than a false negative. False negative matter, since they reduce the investment opportunities for the investor. False positives lead the investor to violate the stipulations for being Shariah compliant.

We further contribute to the literature by examining how accurate is the screening of the equities for Shariah-compliancy for the the universe of S&P 500 firms at each quarter-end over the period 1984 - 2015. We first exclude the firms that do not satisfy the standard qualitative screening conditions in Shariah-compliant investments. This leads to a universe of on average 396 stocks, for which we find that the forward looking approach performs as expected. In comparison to the traditional approach, it substantially reduces the average percentage of false positives and negatives. It also leads to a higher stability in terms of precision across the quarters.

The breach in Shariah-compliance scales up with the percentage contribution of interest to the revenues of the so-called investable firm. We refer to this as the investor’s exposure to *riba* and propose a graphical tool to analyze it. The recommended diagram compares the exposures between the forward and backward looking approach in a scatter plot. It shows that the forward looking approach has less severe violations than the backward looking approach. It also indicates that the false positives can be reduced further through a conservative screening approach that only invests in firms when both the backward and forward looking approach agree that the firm is investable. This combinations makes it doubly effective in avoiding investments in firms that engage in *riba*. The backward looking side guarantees being Shariah-compliant under the current regulation of Shariah boards, while the forward looking side further reduces the probability of investing in firms with a
considerable portion of interest-based revenues.

The remainder of the paper is organized as follows. Section 2 first presents the conceptual problem in the current indicator approach for Shariah screening of interest-based revenues. It then introduces a forward looking screening approach as a solution. Data and main results are discussed in Section 3. Finally, Section 4 summarizes our main findings.

2. Screening methodology

2.1. The backward versus forward looking approach

We consider a Shariah-compliant investor who regularly rebalances her portfolio in order to make sure that the portfolio is invested in firms that are accommodating the Shariah principles. The rebalancing dates are denoted by t. Without loss of generality, we assume that t denotes the last trading day of the quarter. At each rebalancing date t, the investor’s problem of interest is to detect the firms that have a relatively important revenue from interest, as compared to total revenues. This thus means that the presence of interest based activities is measured in relative terms using the ratio TI/TR, where TI stands for the total revenues from interest, and TR corresponds to the firm’s total revenue. For each rebalancing date, we have n_t firms. We use the index $i = 1, \ldots, n_t$ to refer to firm i. For simplicity in presentation, we omit the index i referring to the firm analyzed whenever there is no confusion possible. The ratio TI/TR needs to be compared with a threshold k. The FTSE Shariah indices, the HSBC Amanah Global Equity Index, as well the Islamic investment funds at Al Meezan Investment Management limited all have in common of setting the cut-off value k to 5%.

The current approach is thus backward looking and implies that the Shariah-compliant investor makes her investment decision based on the results of the interest screens with the most recent accounting data of the firm, and a fixed threshold k:

\[
\text{Backward looking screening of revenues from interest:}
\]

\[
\text{a firm is investable over the horizon } [t, t+1] \text{ when its } \left(\frac{TI}{TR}\right)_t \leq k.
\]

The backward looking approach has the problem that, from an investment perspective, it should be the expectation of future revenues from interest that matters in the investment decision, not the observed value. This means that at time t, we need to predict $(TI/TR)_{t+1}$. If we denote the corresponding predictions as $(TI/TR)_{t+1|t}$, this thus leads to the following decision rule:
Forward looking screening of revenues from interest:
a firm is investable over the horizon \([t, t+1]\) when its \(\left(\frac{TI}{TR}\right)_{t+1|t} \leq k\).

2.2. Implementation of the forward looking approach

We use a simple autoregressive model of order one (AR(1)) to forecast the ratio \(TI/TR\).\(^3\) We compare the natural approach of directly forecasting the ratio with the alternative of forecasting the growth rates of \(TI\) and \(TR\) and then using that prediction to construct the forecast of the ratio. Under the direct approach, the predicted ratio is given by:

\[
\left(\frac{TI}{TR}\right)_{t+1|t} = \hat{\alpha} + \hat{\phi} \left(\frac{TI}{TR}\right)_{t},
\]

with \(\hat{\alpha}\) and \(\hat{\phi}\) the OLS estimates of the AR(1) model parameters. Under the indirect approach, we apply the AR(1) time series model to the growth rates of \(TI\) and \(TR\), namely \(g_{t+1}^{TI} = (TI_t - TI_{t-1})/TI_{t-1}\) and \(g_{t+1}^{TR} = (TR_t - TR_{t-1})/TR_{t-1}\). The corresponding predictions are then:

\[
\left(\frac{TI}{TR}\right)_{t+1|t} = TI_t (1 + \hat{g}_{t+1}^{TI})/TR_t (1 + \hat{g}_{t+1}^{TR}),
\]

with \(\hat{g}_{t+1}^{TI}\) and \(\hat{g}_{t+1}^{TR}\) the predicted values from the OLS estimates of the AR(1) model

\[
g_t^{TI} = \alpha^{TI} + \varphi^{TI} g_{t-1}^{TI} + \epsilon_t^{TI},
\]

with \(\epsilon_t^{TI}\) the error term, and similarly for \(g_t^{TR}\).

In the application, we estimate these models, for each firm separately, on rolling windows of 16 quarterly observations. Similar results are obtained when using 12 or 20 quarterly observations.

2.3. Screening errors

Table 1 visualizes the two types of errors that can occur while using the Shariah screening. A false positive occurs when a firm is admitted to the investable universe, but this firm has revenues from interest that exceed the threshold over the investment horizon. A false negative occurs when investing in a firm is prohibited although this firm does not violate the restriction on revenues from interest over the investment horizon.

\(^3\)The data is quarterly. Our analysis (not reported here for brevity but available upon request) shows that adding more lags or complexity to the time series model does not substantially improve the accuracy of the screening decision.
Table 1: The classification problem and the definition of false positives and negatives

<table>
<thead>
<tr>
<th>Predicted values $\hat{\left(\frac{TI}{TR} \right)}_{t+1} > \kappa$</th>
<th>Actual values $\left(\frac{TI}{TR} \right)_{t+1} > \kappa$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>False Negative</td>
</tr>
<tr>
<td>$\hat{\left(\frac{TI}{TR} \right)}_{t+1} \leq \kappa$</td>
<td>$\left(\frac{TI}{TR} \right)_{t+1} \leq \kappa$</td>
</tr>
<tr>
<td>False Positive</td>
<td>True Negative</td>
</tr>
</tbody>
</table>

To evaluate the screening tools, we compute the percentage of false positives and false negatives for each quarter-end t. Recall that we classify a screening decision about firm i at quarter-end t as a false positive when the firm is excluded at time t, whereas the firm’s relative interest based revenues do not in fact exceed the threshold over the period $[t, t+1]$. This firm should not have been excluded. Assuming that, for quarter-end t, there are n_t stocks in the investment universe, the false positive rate for all decisions at time t is the percentage of false positives, given by:

$$\%FP_t = \frac{1}{n_t} \sum_{i=1}^{n_t} I \left[\hat{\left(\frac{TI}{TR} \right)}_{i,t+1} \leq k \right] \times I \left[\left(\frac{TI}{TR} \right)_{i,t+1} > k \right], \quad (4)$$

where $I[\cdot]$ is the indicator function, which is one, if the condition between the brackets is fulfilled.

Similarly, a screening decision at time t is a false negative, when at time t the firm is not excluded, while over the investment horizon $[t, t+1]$, its relative interest revenues do exceed the threshold, and thus it should have been excluded. Averaging across all n_t decisions, we obtain the percentage of false negatives at quarter-end t:

$$\%FN_t = \frac{1}{n_t} \sum_{i=1}^{n_t} I \left[\hat{\left(\frac{TI}{TR} \right)}_{i,t+1} > k \right] \times I \left[\left(\frac{TI}{TR} \right)_{i,t+1} \leq k \right]. \quad (5)$$

To gauge the severity of the violations, we also study the actual exposures. For the investment in firm i over the horizon starting at time t, we define the exposure to supporting
riba as the multiplication of the relative revenues from interest over the investment horizon with the dummy variable indicating that the firm is classified as investable:

\[\text{EXP}_{i,t} = \left(\frac{TI}{TR} \right)_{i,t+1} \times I \left[\left(\frac{TI}{TR} \right)_{i,t+1|t} \leq k \right]. \]

(6)

The exposure is zero, when the firm is not investable. When the exposure is larger than \(k \), the classification is a false positive, and the larger the value of EXP, the more severe the violation is.

3. Data and results

We now document that switching from the traditional screening approach to the proposed forward looking screening approach leads to a substantial reduction of both false positives and false negatives for the universe of quarter-end constituents of S&P 500 firms, that respect the qualitative screens. We do our analysis over the period 1984-2015. From COMPUSTAT, we obtain the S&P 500 constituent lists, together with the quarterly interest (code: TIIQ) and total revenue (code: REVTQ) data. We further follow the methodology of Derigs and Marzban (2009) when we implement the qualitative screens by removing the firms with any involvement in non permissible operations.\(^4\) The resulting number of firms is on average 396 stocks, as can be seen in Figure 1, where the grey area is the number of S&P 500 firms that respect the qualitative conditions.

The lines in Figure 1 show how the screening results reduce the investable universe. The full line shows the number of firms for which more than 5% of the actual total revenues come from interest. This number is the screening result in case of perfect foresight. The dashed line corresponds to the backward looking approach, which is the lagged version of the perfect foresight approach. The dotted line shows the number of firms in each quarter for which the firms predicted interest income does not exceed 5% of the predicted total revenue using the indirect forecasting method. We see that all three lines show a similar time series variation. To study the differences in more detail, we consider next the percentage of false positives and false negatives for the various approaches.

\(^4\)We exclude the firms for which the global industrial classification standards (GICS) codes are 20101010 (aerospace and defense), 25301010 (casinos and gambling), 25301020 (hotels, resorts and cruise lines), 25301040 (restaurants), 25401020 (broadcasting), 25401030 (movies and entertainment), 30201010 (brewers), 30201020 (distillers and vintners), 30203010 (tobacco), financial firms for which the GICS code starts with 4010, 4020 and 4030, and firms that are active in swine production.
Figure 1: Number of firms in the S&P 500 that respect the qualitative screens and the interest-rate based screening condition that $TI/TR \leq 5\%$. The criterion is evaluated using either perfect foresight (the actual value of TI/TR), the backward looking approach (the lagged value of TI/TR) or the forward looking approach (the predicted value of TI/TR using the growth forecasts).

Note: This figure shows, for each quarter-end t in the period 1984 to 2015, the number of S&P 500 stocks satisfying the qualitative screens, and the number of remaining firms when in addition the interest rate screening condition is imposed, using either the actual value (TI/TR_t), the previous quarter value (TI/TR_{t-1}) or the predicted value ($\hat{(TI/TR)}_{t|t-1}$). The predicted value is obtained using the indirect method of first forecasting the TI and TR growth rates.

Our main results are shown in Table 2. We present the mean value, standard deviation and maximum of the quarterly percentage of false positives and false negatives, as defined in Equation (4) and Equation (5). In addition to the above statistics we also report the turnover values, computed as the percentage of firms that enter or exit the universe due to the screening. Comparing the traditional backward looking approach with the forward looking approach, we see that, predicting the ratio indeed leads to substantially less false positives and false negatives on average. Also the volatility of the percentage of false positives and false negatives is reduced, implying more consistency over time. This follows also from the maximum values, showing that the forward looking approach dramatically reduces the
Table 2: Summary statistics of the quarterly percentage of false positives and false negatives when screening the interest-based revenues of S&P 500 firms satisfying the qualitative screens.

<table>
<thead>
<tr>
<th></th>
<th>Backward looking</th>
<th>Forward looking</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%FP</td>
<td>%FN</td>
<td>TO</td>
</tr>
<tr>
<td>Mean</td>
<td>2.84</td>
<td>3.36</td>
<td>6.21</td>
</tr>
<tr>
<td>Sd</td>
<td>1.09</td>
<td>1.12</td>
<td>1.69</td>
</tr>
<tr>
<td>Max</td>
<td>6.17</td>
<td>6.12</td>
<td>9.93</td>
</tr>
</tbody>
</table>

Note: This table summarizes the out-of-sample precision of the screening decisions. We report the mean, standard deviation and maximum value of the quarterly percentage of false positives FP and false negatives FN for the traditional backward looking approach, and the proposed forward looking and conservative screening approaches. We also report the summary statistics for the universe turnover (TO) in terms of the sum of the % of entries and exits in the universe. The analysis is done for the S&P 500 stocks that satisfy the qualitative screening conditions. All numbers are shown in percentage points.

value of the worst percentage of false positives and false negatives over the out-of-sample evaluation period. Finally, in terms of prediction method, we can conclude that the indirect approach leads to the highest accuracy. Compared to the indirect forecasting approach, this comes at the price of a slightly higher turnover, as can be seen in the column “TO” showing the summary statistics for the percentage of stocks that yearly enter and exit the universe.

In addition to analyzing the percentage of false positives and false negatives, we also propose a graphical approach to study the effect of the screening method on the magnitude of the investor’s exposure to interest-rate revenues, as defined in Equation (6). Recall that, by definition, the exposure is zero when the firm is not investable. Otherwise it equals the TI/TR over the investment horizon. The exposure diagram that we recommend is shown in Figure 2. The top figures show the scatter plot of the exposures under the forward looking approach against the exposures under the backward looking approach. In gray, we indicate the investment decisions that respect the interest rate condition. The dots in black correspond to violations. The two methods fail when the black dots are on the 45 degrees line. The method on the x-axis fails, when the black dot is on the x-axis, while the method on the y-axis fails if the black dot is located on y-axis.
Figure 2: The *riba* exposure diagram visualizing the (dis)agreement and magnitude of interest screening violations across methods.

Note: This figure compares the exposure to the relative income from interest between the forward looking (*y*-axis) and the backward looking (*x*-axis) approach. The dotted lines show the 5% threshold level. The observations in gray correspond to exposures less than 5%. When a gray dot is non-zero and on the *x*-axis (resp. *y*-axis) it is a false negative for the forward looking (resp. backward looking) approach. The observations in black correspond to exposures of at least one method that exceed the threshold and are thus false positives. When the black dots are on the diagonal line, both methods fail. When the black dot is on the *x*-axis (resp. *y*-axis), it is only the backward (resp. forward looking) approach that fails to exclude firms with a revenue from interest that exceeds 5% over the investment horizon.

Two interesting results can be drawn from the top plots. First, note that the backward
looking approach has more severe violations than the forward looking approach. This can be seen by the larger number of extreme black dots on the x-axis compared to the y-axis. Second, there are black dots on both the x-axis and the y-axis, which means that there are instances in which the backward looking approach is more successful than the forward looking approach in detecting interest-based revenue violations, and vice versa. Since avoiding false positives is the primary objective in Shariah investing, we conclude the analysis by studying the conservative screening approach of only investing in firms if both the backward and forward looking approach agree that the firm is investable. This then leads to the following decision rule:

Conservative screening of revenues from interest:

A firm is investable over the horizon \([t, t+1]\) when its \((\frac{TI}{TR})_{t+1|t} \leq k\) and its \((\frac{TI}{TR})_t \leq k\).

As can be seen in Table 2, the conservative approach has the advantage of reaching the lowest percentage of false positives across all methods considered. When the predictions of \(TI/TR\) are obtained using the indirect method of forecasting growth rates, the percentage of false positives for the conservative approach is 0.45%, compared to 1% and 2.84% for the forward looking and backward looking approaches. The combination of the backward and forward looking approach is thus very effective in supporting firms that engage in \(riba\).

A further advantage of the joint approach is that the conservative approach only invests in firms that are considered to be investable according to the method that is currently accepted by the board of Shariah scholars, namely the backward looking approach. A disadvantage is that the reduction in false positives compared to the forward looking approach comes at the price of the highest number of percentage of false negatives (4.44% for the conservative approach versus 1.09% and 3.36% for the forward and backward looking approach). Importantly, this does not seem to affect financial performance. In fact, as we illustrate in Table 3, the choice of screening method has almost no influence on the financial performance of market capitalization weighted or equally weighted portfolios invested in the firms that satisfy the qualitative and interest-based screening rules.\(^5\)

The baseline result is thus the recommendation to use predicted values of the relative interest-based revenue indicator. When combined with the backward looking approach, it leads to the lowest percentage of false positives.

\(^5\)Note that the table does not reflect real-life performance of Shariah compliant equity portfolios, as it does not take into account the liquidity and leverage screens. The latter are not the focus of our paper. See e.g. Boudt et al. (2016) for a more comprehensive financial performance evaluation of Shariah-compliant portfolios constructed for the S&P 500 universe.
Table 3: The (absence of) effect of the choice of interest activities screening method on the performance Shariah-compliant portfolios

<table>
<thead>
<tr>
<th></th>
<th>Backward looking</th>
<th>Forward looking</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
<td>Direct</td>
</tr>
<tr>
<td>Ann.Return (%)</td>
<td>11.86</td>
<td>11.87</td>
<td>11.96</td>
</tr>
<tr>
<td>Ann.Vol (%)</td>
<td>15.07</td>
<td>15.05</td>
<td>15.07</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>0.52</td>
<td>0.53</td>
<td>0.52</td>
</tr>
<tr>
<td>Max. drawdown (%)</td>
<td>41.86</td>
<td>41.93</td>
<td>41.93</td>
</tr>
<tr>
<td>5% VaR</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.06</td>
</tr>
</tbody>
</table>

Panel A: Market capitalization-weighted portfolios

<table>
<thead>
<tr>
<th></th>
<th>Backward looking</th>
<th>Forward looking</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct</td>
<td>Indirect</td>
<td>Direct</td>
</tr>
<tr>
<td>Ann.Return (%)</td>
<td>12.14</td>
<td>12.17</td>
<td>12.22</td>
</tr>
<tr>
<td>Ann.Vol (%)</td>
<td>17.09</td>
<td>17.08</td>
<td>17.04</td>
</tr>
<tr>
<td>Sharpe ratio</td>
<td>0.47</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Max. drawdown (%)</td>
<td>47.52</td>
<td>47.92</td>
<td>47.46</td>
</tr>
<tr>
<td>5% VaR</td>
<td>-0.07</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

Panel B: Equal-weighted portfolios

Note: This table shows the financial performance of the market capitalization weighted and equal-weighted portfolios invested in the stocks that, besides satisfying the qualitative screening conditions, are considered to be investable according to the backward looking, the proposed forward looking and the conservative screening methods. The portfolios are monthly rebalanced. The screening is done quarterly. For the out-of-sample monthly returns over the period 1984-2015, we the annualized returns, annualized volatility, Sharpe ratio, the maximum drawdown and the 5% empirical quantile as estimate for the 5% value at risk. The Sharpe ratio is computed used the US T-Bill rate obtained from the data library of Kenneth French. Average returns and volatility are annualized using the geometric approach and square-root-of-time rule, respectively.

4. Conclusion

The primary objective of the Shariah-compliant investor is adherence to Shariah principles. In equity investment this is achieved if she does not invest in firms with interest-based revenue exceeding the maximum allowed threshold level. In order to achieve this objective the current Shariah guidelines screen the financial records of firms from a backward perspective. In this paper, we show that this practice has a double cost. First, it leads to a high number of false negatives and this causes the reduction in the investment opportunity set by excluding genuinely Shariah-compliant firms from the investment universe. Second, it leads to a higher number of false positives because some of the firms that are classified as investable are actually the ones that engage in *riba* over the investment horizon. We show that both costs can be reduced by the use of a forward looking approaches to the screening practices that are in accordance with Shariah principles. We also evaluate the conservative approach of only classifying a firm as investable when both the forward and backward
looking approach agree. This leads to the highest false negative rate, but the lowest false positive rate. We recommend the conservative approach as it matches with the primary Shariah investing objective of avoiding to invest in firms that engage in *riba*. All methods considered lead to portfolios with similar financial performance.

References

Evaluating the Shariah-compliance of equity portfolios: The weighting method matters ∗

Kris Boudt a,b,c, Muhammad Wajid Raza a,d, Marjan Wauters a,e

a Solvay Business School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
b Faculty of Economics and Business, Vrije Universiteit Amsterdam, The Netherlands
c Quantitative Strategies, Finvex
d Shaheed Benazir Bhutto University, Dir, Pakistan
e Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

Abstract

The choice of weighting method in constructing equity portfolio affects not only the financial performance, but also its Shariah-compliance. We show how the implicit bets in market capitalization weights, fundamental value weights, equal weights and low risk weights can affect the individual’s perception of Shariah compliance of the financial portfolio. For the universe of Shariah-compliant S&P 500 stocks over the period 1986-2014, we find that the risk-adjusted performance is improved when using the alternative weighting methods compared with the traditional use of market capitalization weighting. The choice of weighting method thus matters for the Shariah-compliant equity investor, both in terms of compliance with the primary objectives of Shariah investing and in terms of the secondary objective of optimizing the financial performance of the portfolio.

Keywords: Islamic finance, Shariah-compliant investing, Market capitalization, Fundamental weighting, Equal weighting, Low risk weighting

We are grateful to Shaheed Benazir Bhutto University Dir, Pakistan and the Higher Education Commission, Pakistan for providing financial support. We also like to thank Özgur Arslan, Pierre-Guillaume Méon and participants at various seminars and conferences for useful comments.

Correspondence to: Muhammad Wajid Raza, Vrije Universiteit, Pleinlaan 2, 1050, Brussels Belgium.
Email: wajidrazauom@sbbu.edu.pk. Tel: +322629203.
Email addresses: kris.boudt@vub.ac.be (Kris Boudt), wajidrazauom@sbbu.edu.pk (Muhammad Wajid Raza), marjan.wauters@vub.ac.be (Marjan Wauters)

Finvex Research Paper May 27, 2017
1. Introduction

Nowadays, most Shariah-compliant equity portfolios are invested using the market capitalization weighting approach on the screened investment universe of Shariah-compliant stocks. Most Shariah investment guidelines are explicit on the screening criteria, but silent on the choice of weighting method. One notable exception is Derigs and Marzban (2009) who advocate a new paradigm that states that, in a portfolio framework, Shariah compliance should not be judged solely at the individual stock level, but also at the portfolio level. We contribute to this paradigm by providing both theoretical and empirical arguments stressing the importance of the choice of the weighting method.

We compare the traditional choice of market capitalization weighting with the alternatives of fundamental value, equal-weighting and low risk weighting. We show that the investor seeking for Shariah-compliance can benefit in three ways from considering an alternative weighting method. Firstly, we note that in some cases, stock mispricing may lead to implicit bets in market capitalization-weighted Shariah-compliant equity portfolios, which can be seen as inconsistent with the primary objectives of Islamic finance. Secondly, we find that, for the Shariah-compliant S&P 500 stocks over the period 1986–2014, the market capitalization weighted portfolio tends to lead to portfolios with a relatively higher allocation to stocks with high interest receivables compared to the approach of low risk weighting. However, the low risk weighting tends to have a high relative allocation to firms that are debt-financed. Thirdly, we show that the alternative weighting methods improve risk-adjusted performance for Shariah-compliant S&P 500 stocks over the period 1986–2014.

Our research adds to the growing literature questioning the efficiency of the market capitalization portfolio. There are several reasons to question the efficiency of market capitalization weighting in the context of Shariah-compliant equity investing. The first is that the Sharia-compliant equity screening is a direct violation of the assumption of the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965a,b) that investors can invest in all assets. It thus follows that, because of the restricted universe, there is no reason to conclude that the choice of market capitalization weights always leads to mean-variance efficient portfolio weights.

A second reason for the inefficiency is that, if there is mispricing in the stock market, the choice for market capitalization weighting leads to an outcome that is always undesirable for the Shariah-compliant investor. A market capitalization-weighted investment strategy takes concentrated bets in the largest capitalization stocks and thus overweights the overpriced stocks relative to the underpriced stocks. There are two possible outcomes. Either, the
mispricing amplifies and the investor gains from speculating on a short run momentum effect in equity markets. Such a speculation gain violates the principle of prohibition of Gharar (excessive risk, uncertainty) and Maisir (speculation) in Islamic finance, as we explain in the next section. Or, the mispricing is reversed, which then leads to an amplified financial loss as a consequence of the overweighting of overpriced stocks. It is important to stress that these two outcomes are implicit consequences from the choice of portfolio weights and are present whenever there is mispricing, even when it is completely unpredictable.¹

Based on this mispricing model, we thus argue that market capitalization weighting may be inconsistent with the general objective of Islamic finance to create a “win-win” situation for all parties involved. This criticism is related to Obaidullah (2005), who argues that Shariah-compliant portfolio weights should reflect the intrinsic value of the firm. In order to avoid the effects of booms and busts in stock prices, he suggests to use accounting-based measures that proxy for the replacement value of assets rather than market capitalization. We implement this suggestion using the fundamental value approach of Arnott et al. (2005), which sets portfolio weights as proportional to accounting and financial statement measures of company size.

In addition to studying the effect of using fundamental value weighting in a Shariah-compliant equity portfolio, we also consider the approach of equal and low-risk weighting. Assigning equal weights to the portfolio components has the advantage that it implies a perfect diversification in terms of budget allocation across the different stocks in the equity universe. The advantage of low-risk weighting is that it leads to underweighting high volatility stocks, and therefore reduce the exposure to mispricing. In fact, as shown by Hong and Sraer (2016), volatility increases the likelihood of mispricing. For this reason, the approach of low-risk investing may also be more suitable for an Islamic investor.

Finally, we show that the choice of weighting method not only matters in terms of compatibility with the objectives of Islamic finance, but that it can also have substantial effects on the investment performance. We find that for the universe of Shariah-compliant S&P 500 stocks over the period 1986–2014, the equal-weighted and low-risk portfolio allocation approach outperform the standard choice of market capitalization weighting, both in terms of total annualized returns and Sharpe ratio. This result is for gross returns, but our analysis of break-even transaction costs shows that the gains in performance are large enough to

¹ In some cases, the mispricing is partly predictable. This happens when the investor has privileged access to information (Diebold and Strasser, 2013) or is able to benefit from the time series persistence in mispricing (Barberis and Shleifer, 2003). The deliberate use of predicted mispricing in stocks can be considered as a violation of the general objective of fairness in Islamic finance.
compensate for the higher turnover in the equal-weighted and low-risk portfolio, compared with the market capitalization-weighted portfolio. To the best of our knowledge, our paper is the first to study the performance of Shariah-compliant portfolios using detailed stock data over such a long out-of-sample evaluation window (31 years).

The main message of this paper to the Shariah-compliant investor is to carefully consider the decision of equity weighting. The primary Shariah objectives as prescribed by the religious scriptures in the Quran and Hadiths provide the Shariah-compliant investor ample freedom to optimize the portfolio composition in order to be compliant with the primary objectives, while optimizing the secondary objectives. By considering alternatives to market capitalization-weighting, the Shariah-compliant equity investor can obtain at the same time a higher risk-adjusted performance and avoid the undesirable effects of stock mispricing on the weights defined using stock’s market capitalization.

The remainder of the paper is organized as follows. Section 2 studies the effects of mispricing on the payoff for a Shariah-compliant investor in a market capitalization-weighted equity portfolio and shows the negative effects of the choice of market capitalization weighing in all possible states. Section 3 introduces the method used for setting the portfolio weights in Shariah-compliant equity portfolios. Section 4 presents the data and the empirical method used in the performance evaluation of the choice of weighting method. Section 5 discusses our main empirical results. Section 6 verifies the robustness of our results to the choice of time window and the alternative Shariah guidelines. Finally, Section 7 summarizes our main conclusions and highlights the implications for researchers and investors.

2. Stock mispricing and the Shariah-compliance of the market capitalization-weighted equity portfolio

The evaluation of the Shariah-compliance of a portfolio has both a dichotomous and a continuous side. On the one hand, the portfolio is not Shariah-compliant if the portfolio is invested in strictly prohibited activities such as firms with core business centered around revenues received from interest, alcohol, pork products, gambling and adult entertainment services. This result is independent of the weight assigned to such activities. On the other hand, a certain number of activities are in the gray zone and, as advocated by Derigs and Marzbân (2009), the Shariah compliance of the portfolio can then be evaluated based on the weight attached to the activities that are not perfectly aligned with the Shariah objectives. In those cases, the choice of equity weighting method matters.

Indeed, the Shariah-compliance of a single stock is partly evaluated by the use of financial
screens designed to exclude investments in the shares of a firm with a too high proportion
of liquid assets, stocks that have a too high revenue from interests or firms for which the
activities are financed by a high degree of leverage. This condition can be evaluated at
the individual firm, but also at the aggregate portfolio level. Suppose e.g. that we have
N firms for which the standardized measure of income from interest at time t is denoted
by $x_{i,t}$ (with $i = 1, \ldots, N$), then individual compliance is verified by comparing $x_{i,t}$ with a
threshold, while compliance at the portfolio level can be also evaluated using the weighted
average compliance

$$x_t(w) = \sum_{i=1}^{N} w_{i,t} x_{i,t},$$

with $w_{i,t}$ the portfolio weight of asset i at time t.

Derigs and Marzban (2009) propose approaches to integrate constraints on $x_t(w)$ in
mean-variance optimization. However, few Islamic funds are mean-variance optimized. In-
stead, they use either an active approach to setting weights, follow the traditional approach
of market capitalization based weighting or use smart-beta portfolio weights such as funda-
mental value, equal-weighting or low risk weighting.

In the remainder of this section we argue that, in addition to preferences over the weighted
stock attributes $x_t(w)$, the Islamic investor may also have preferences about the weighting
method because of the way stock mispricing affects the profits and loss profile of the portfolio
and thus its coherence with the fundamental Islamic finance principle of aiming at mutual
cooperation in Shariah investing.

2.1. The mispricing model

There is a long-standing debate in financial economics on how stock prices are determined
in financial markets and whether these prices reflect their fundamental value. Proponents of
the Efficient Market Hypothesis of Malkiel and Fama (1970) argue that prices fully reflect
all available information. If a price would be too high given the available information,
arbitrageurs would, almost instantaneously, bid the price down and mispricing would be
short-lived. On the other hand, there is the behavioral finance literature presenting empirical
evidence of so-called market anomalies, which go against the hypothesis of stock market
efficiency. The two schools of thought seem to find a consensus that there may be temporary
deviations of the observed price from the so-called fundamental or efficient price, because
of the limits to arbitrage and investor irrationality (Barberis and Thaler, 2003). Moreover,
as argued by the market microstructure literature, there can be difference in access to
information across traders (Diebold and Strasser, 2013).
Before investigating the effects of stock mispricing on Shariah-compliant equity investing, we formalize the mispricing as follows. Let $P_{i,t}$ be the observed price for stock i at time t, and denote $P^*_{i,t}$ as its fundamental price. Since the fundamental price is not directly observable, it may be that the actual price deviates from the fundamental price. If we denote by $\omega_{i,t}$ the extent of mispricing, then:

$$P_{i,t} = P^*_{i,t} + \omega_{i,t}. \quad (2)$$

If $\omega_{i,t}$ is positive (negative), the stock is overpriced (underpriced). Such a mispricing model is also considered by, among others, Roll (1984), Poterba and Summers (1988), Brennan and Wang (2010) and Diebold and Strasser (2013).

2.2. The prohibition of Gharar and Maisir in Islamic finance

The general principle of aiming for mutual cooperation and a “win-win” situation for all parties involved in a transaction implies that there may be no asymmetries in terms of excessive risk or easy gains for only one of the parties (Obaidullah, 2005). This principle may be violated when there is mispricing, since, in that case, there is the risk of buying at a price that is substantially different from the fundamental value of the underlying asset. In general, the value of the mispricing is determined at the macro-financial level and not influenced by the individual investor. Nevertheless, there is the possibility that gains will be made by speculating on the mispricing. For conventional finance, this is well-understood and does not raise any concern. In Islamic finance, this may lead, however, to a violation of the principle of prohibition to participate in transactions that include either Gharar (i.e., transactions involving excessive risk for one of the parties) or Maisir (i.e., transactions involving speculation which would lead to easy accumulation of wealth without any effort). The motivation of prohibiting Gharar and Maisir is thus similar. It requires that wealth must be the result of Kasb (efforts), and the profit one makes must not be at the expense of losses of others. As such, the prohibition of Gharar and Maisir in Islamic finance serves to protect both the buyer and seller involved in an economic transaction from injustice and exploitation (El-Gamal, 2001).

2.3. The effect of mispricing on the Shariah-compliant market capitalization-weighted portfolio

Under the mispricing model in 2, the stock is not traded at the fundamental price, implying possible wealth transfers between the buyer and seller. These transfers can be analyzed from two angles, namely the zero sum game at the instance of the transaction and
the intertemporal viewpoint that takes the dynamic evolution of the mispricing premium over the investment horizon into account.

From a pure static viewpoint, the transaction is a zero sum game. In case of overpricing, the seller makes an effortless profit of $\omega_{i,t}$, while the buyer loses $\omega_{i,t}$, compared with the intrinsic value of the transaction. If investors are informed about the mispricing and exploit this, then they would act against the Shariah principle of prohibition of *Gharar*, which in this case involves making excess profit by not disclosing the underlying’s mispricing value. In reality however, mispricing is typically latent and most investors are uninformed about it, and therefore cannot act against this. They may speculate on mispricing, which would be against the principle of prohibition of *Maisir*. The basic argument behind the prohibition of *Maisir* is that income or wealth must be the result of knowledge, efforts and work, *Kasb*, and not just by pure chance. In fact, the *Quran* prohibits all types of gambling and games of chance (speculation) on the ground that the profit one makes is based on the losses of others (Iqbal et al., 2006).

The dynamic case is also relevant since Shariah-compliant equity investments are rarely buy-and-hold investments. In case of the market capitalization-weighted Shariah portfolio, the weights are rebalanced regularly because of changes in the Shariah-compliant investment universe. Such a rebalancing involves buying and selling stocks. Even when the underlying fundamental price remains constant, there may be a profit when the mispricing value at the time of the selling is higher than the mispricing value at the time of the acquisition of the stock.

It follows that the choice of market capitalization weighting leads to mispricing related payoffs that are not desirable for the Shariah investor. Indeed, suppose that the mispricing $\omega_{i,t}$ increases over the investment horizon, then the investor makes an effortless profit and acts against the Shariah principles. In the reverse case, when the mispricing $\omega_{i,t}$ decreases over the investment horizon, then the investor is twice penalized: she bought the stock at a too high value and she overweighted the stock in her portfolio. Under this interpretation, investors seeking adherence to Shariah compliance may wish to consider alternative approaches to portfolio weighting. We explore this further in the next sections.

2In most cases, this is not deliberate, since, as mentioned in Footnote 1, when the mispricing is unpredictable, there is no intentional gambling by the investor in choosing the portfolio weights. In the special case where mispricing is partly predictable (e.g. in case of a market rally where high market capitalization stocks increase relatively more than low market capitalization stocks) and market capitalization weights are chosen to deliberately exploit the mispricing, then the trading decisions can be considered as a violation of the general objective of fairness in Islamic finance.
3. Portfolio weights in Shariah-compliant equity portfolios

Shariah-compliant equity portfolios determine the portfolio weights in two steps. First, the universe is screened to remove all stocks that are not Shariah-compliant. Second, the portfolio weights are determined.

3.1. Shariah-compliant screening

Almost all Shariah-compliant equity portfolios track a universe of Shariah-compliant stocks obtained by the use of negative criteria. This means that the traditional investment universe (e.g., the universe of S&P 500 stocks) is screened to exclude all stocks that do not satisfy the conditions of the Shariah. In practice, this is implemented using a series of qualitative and quantitative conditions.

In our main analysis, we follow the guidelines used in the Dow Jones Islamic Market (DJIM) indices. The DJIM indices apply screening rules formulated by a well-diversified Shariah board consisting of five Shariah scholars representing almost every school of thought in Shariah decision making. More precisely, DJIM uses two types of negative screens, namely sector screens and financial screens. The sector screens reflect the prohibition to invest in firms with core business as interest, alcohol, pork products, gambling and adult entertainment services.

The financial screens are designed to exclude investments in the shares of a firm with a too high proportion of liquid assets, stocks that have a too high revenue from interests or firms for which the activities are financed by a high degree of leverage. Importantly, the financial screens can be used in two ways. The traditional approach is to apply the financial screens to exclude stocks from the investment universe. Under the paradigm of Derigs and Marzban (2009) they also matter in terms of assessing Shariah compliance at the portfolio level using the weighted average performance measure in terms of the variables used to compute the financial screens.

In our main analysis we follow the screening practices mentioned in the factsheet of Dow Jones Islamic Market Indices (DJIM). The quantitative screens of DJIM exclude firms whose account receivables exceeds 33% of the market capitalization, as well as firms for which the

3The Shariah conditions for portfolio investments are not explicitly stated in the Quran and Hadiths (sayings of the Prophet Muhammad). These rules are mostly the outcomes of Qiyas and Ijma of Shariah Board associated with the index providers (Qiyas is an arabic word and refers to the process of analogical reasoning based on the teachings of Quran and Hadiths, while Ijma means the mutual consensus of Shariah scholars). For details on the derivation and the use of Shariah screens, we refer the reader to Obaidullah (2005) and Derigs and Marzban (2008).
cash and short-term investment exceed 33% of the market capitalization and the firms for
which total debt exceeds 33% of the market capitalization, from the investment universe.
The choice for the DJIM as the benchmark methodology is consistent with prior research
(see, e.g., Shamsuddin, 2014; Hassan and Girard, 2011; Ho et al., 2014; Charles et al., 2015).

In the robustness section, we consider alternative selection guidelines provided by HSBC
Amanah, which differ in the choice of financial screens. The financial screens of HSBC
exclude firms whose account receivables plus cash and short term investment exceeds 50%
of total assets, as well as firms for which the total interest exceeds 5% of total revenue and
firms for which the total debt exceeds 30% of total assets. Note that, while the DJIM criteria
use market capitalization as divisor, the HSBC screening conditions are using total assets as
denominator. While market capitalization is available at a higher observation frequency than
total assets, the latter has the advantage of being less sensitive to pricing errors. Moreover,
as noted by Obaidullah (2005), since the investable firms are in a state of going concern, the
book value of total assets can be seen as a more realistic measure of the total replacement
value of a firm.

3.2. Determining the portfolio weights

After the screening step, follows the decision of weight allocation to the stocks in the
investment universe. The impact of the weighting method is the main focus of our paper.
Before introducing the weighting methods considered, let us first fix the notation. Assume
that the portfolio is rebalanced at times \(t = 1, \ldots, T \). To construct the portfolios with
different weighting methods, we start from a reference investment universe of S&P 500
stocks. We denote \(I_{i,t} \) as the dummy variable indicating whether stock \(i \) belongs to the
reference investment universe at time \(t \) and \(i = 1, \ldots, N \), with \(N \) the number of stocks
in the investment universe. In a second step, we determine whether the stock is Shariah-
compliant. Therefore, we define \(S_{i,t} \) as the dummy variable which is one if stock \(i \) at time \(t \)
is Shariah-compliant. Finally, we determine the stock weight \(w_{i,t} \) in the portfolio. We assume
that the portfolio is fully invested and do not allow for short selling since this is prohibited
by Shariah.

3.2.1. Market capitalization weighting

In the case of a market capitalization-weighted portfolio, the stock’s weight in the
Shariah-compliant market capitalization portfolio is given by:

\[
 w_{i,t}^{MC} = \frac{P_{i,t} \cdot n_{i,t} \cdot I_{i,t} \cdot S_{i,t}}{\sum_{j=1}^{N} P_{j,t} \cdot n_{j,t} \cdot I_{j,t} \cdot S_{j,t}},
\]
where $P_{i,t}$ is the stock’s price of individual asset i at time period t, $n_{i,t}$ is the number of common stocks outstanding of firm i at time t. The dummies $I_{i,t}$ and $S_{i,t}$ are as defined above and ensure that only Shariah-compliant stocks belonging to the investment universe on selection date t receive a non-zero weight.

3.2.2. Fundamental-weighted

When there is mispricing and thus the observed price $P_{i,t}$ does not correspond to the intrinsic value $P^*_{i,t}$, as described in (2), the market capitalization weights are distorted in terms of overweighting the overpriced stocks, and underweighting the underpriced stocks. One solution to this problem is to use a better proxy for $P^*_{i,t}$ than the market price $P_{i,t}$. Obaidullah (2005) recommends to use proxies that reflect the replacement value of the firm. This suggestion is close to the approach of fundamental weighting, as popularized by Arnott et al. (2005). It uses the book value of the firm common equity, together with three other accounting-data based proxies, namely the five-year trailing averages of the yearly value of dividends, net operating cash flow and sales. The four proxies are combined by taking the mean of the normalized version of the four fundamental proxies.\(^4\) This then leads to the following definition of fundamental-weights in a Shariah-compliant portfolio:

$$w_{i,t}^{FW} \equiv \frac{1}{4} \sum_{k=1}^{4} \left(\frac{\max\{x_{k,1}, 0\} \cdot I_{i,t} \cdot S_{i,t}}{\sum_{j=1}^{N} \max\{x_{k,j}, 0\} \cdot I_{j,t} \cdot S_{j,t}} \cdot \ldots \cdot \frac{\max\{x_{k,N}, 0\} \cdot I_{j,t} \cdot S_{j,t}}{\sum_{j=1}^{N} \max\{x_{k,j}, 0\} \cdot I_{j,t} \cdot S_{j,t}} \right),$$

(4)

where $x_{1,i}$ is the size of the firm i measured as the book value of the firm common equity. $x_{2,i}$, $x_{3,i}$ and $x_{4,i}$ represents the five-year trailing averages of the yearly value of dividends, net operating cash flow and sales, respectively. We use the trailing averages to avoid the excessive volatility in the final weights caused by variation in the fundamental indicators. As before, the variables $I_{i,t}$ and $S_{i,t}$ are the dummies that take the value of one when the firms belongs to the S&P 500 asset universe and is Shariah-compliant, respectively.

3.2.3. Equal-weighted

The second alternative weighting method that we consider is the approach of equal-weighting, which totally ignores the market value of the assets in the universe. Under equal

\(^4\)For non-dividend paying firms, the composite portfolio weight is set to the average of the three remaining measures as proposed by Arnott et al. (2005).
weighting, the Shariah-compliant weights are given by:

\[w_{i,t}^{EW} = \frac{I_{i,t} \cdot S_{i,t}}{\sum_{j=1}^{N} I_{j,t} \cdot S_{j,t}}, \]

where \(N \) is the number of stocks included in the universe, and the dummies \(I_{i,t} \) and \(S_{i,t} \) are one, if stock \(i \) on selection date \(t \) is part of the investment universe and satisfies the Shariah screening conditions, respectively.

Equal-weighted portfolios are widely used in practice (Benartzi and Thaler, 2001; Windcliff and Boyle, 2004). In addition to its simplicity in construction and its perfect diversification in terms of capital allocation, there is also some empirical evidence that equal weighting may outperform the market capitalization and price-based portfolios (Plyakha et al., 2014) and alternatives based on mean-variance optimization (DeMiguel et al., 2009). On rebalancing dates, the equal weighting approach sells high and buys low, and thus gains when there is a mean-reversion in the mispricing. Equal weighting also benefits from the size premium because, compared to the market capitalization-weighted portfolio, it overweights small-cap stocks and underweights large-cap stocks.

3.3. Low risk weighted

The uncertainty about the market value of a firm is caused, among others, by the general presence of volatility in equity market returns. The larger the volatility, the more difficult it generally becomes to obtain the correct valuation of the firm (see, e.g., Hong and Sraer, 2016). When volatility is considered as a proxy for the likelihood and the size of mispricing, it follows that a natural way to avoid mispricing is to focus the investment on the low volatility stocks. This then corresponds to a low risk portfolio strategy, where the portfolio weights are defined such that the portfolio’s risk is reduced compared with alternative weighting methods such as market capitalization weighting or equal weighting. This can be achieved by minimum variance optimization, as in De Carvalho et al. (2012), or by using heuristic approaches which first select the low risk stocks and then weight the stocks inversely to their risk characteristics (Chow et al., 2014). The latter explain that the heuristic approach tends to mimic the portfolio allocations obtained by minimum variance optimization. This method is also used by the S&P 500 low volatility index and by Ardia et al. (2016). We follow this two-step approach and thus set the low risk approach based weights as follows:

\[w_{i,t}^{LR} = \frac{\frac{1}{\sigma_{i,t}} \cdot I_{i,t} \cdot S_{i,t} \cdot L_{i,t}}{\sum_{j=1}^{N} \frac{1}{\sigma_{j,t}} \cdot I_{j,t} \cdot S_{j,t} \cdot L_{j,t}}, \]
where \(\frac{1}{\sigma_{i,t}} \) is the inverse volatility of stock \(i \) at time \(t \), and \(L_{i,t} \) is the dummy indicating that the selected stock is among the 100 least volatile Shariah-compliant stocks in the S&P 500 universe at selection date \(t \). We take the volatility estimated over a 24-month rolling window.

4. Data and methodology

4.1. Data

To analyze the effect of the weighting method on a Shariah-compliant equity portfolio, we use the month-end constituents of the S&P 500 as the reference investment universe. The analysis period ranges from January 1986 to July 2014. We use the monthly adjusted price data obtained from COMPUSTAT. To obtain the subset of Shariah-compliant stocks, we apply sector and financial screens used by DJIM, as described in Subsection 3.1. More precisely, we use the Global Industrial Classification Standards (GICS) to screen the type of sector. To implement the financial screens, we use the total assets, common shares outstanding, total debt, accounts receivables, cash and short term investments and interest payments, as reported in the COMPUSTAT database on an annual basis. We use the 24-months trailing average of market capitalization as denominator in calculating the financial ratios.\(^5\) To calculate the fundamental-weights in 4 we use four fundamentals, namely: book value of common equity, dividend, sales and net operating cash flow. COMPUSTAT provides these data on an annual basis. The net operating cash flow is calculated as the difference between the operating income before depreciation and total accruals.

4.2. Composition of the screened investment universe

The Shariah-compliant equity universe is obtained after applying sector and financial screens that significantly limit the investment universe. Figure 1 shows the resulting number of Shariah-compliant stocks in the S&P 500 universe over the period 1986 to 2014. The Shariah-compliant stocks are obtained by following the screening guidelines of DJIM and HSBC. When following the screening guidelines of DJIM, the reference investment universe of S&P 500 constituents is reduced to on average 193 stocks with a minimum number of 143 stocks in 1986 and a maximum number of 257 stocks in 2007. As explained in Subsection 3.1, most of the DJIM Shariah screening rules use ratios of accounting variables

\(^5\)The 24-month trailing average market capitalization at month-end \(t \) is the average market capitalization for the company over the most recent 24 month-ends. Taking the trailing average has the advantage of smoothing out the fluctuations in market capitalization.
Figure 1: The effect of Shariah-compliant equity screening on the cardinality of the S&P 500 investment universe

Note: This figure shows, in terms of the number of remaining S&P 500 stocks, the effect of reducing the investment opportunity set when applying the Shariah screening guidelines provided by DJIM and HSBC for the period 1986 to 2014. Here we report the number of compliant assets after qualitative and quantitative analysis. We used Global Industrial Classification Standards (GICS) for qualitative screening. Quantitative screening is carried out with the screening ratios and threshold limit provided by investment guidelines of DJIM and HSBC.

with respect to the firm’s market capitalization. Over the period, there has been an increase in the number of Shariah-compliant stocks, because of the higher average growth rate of the market capitalization relative to the growth rate of the accounting variables used (i.e., account receivables, cash and short-term investments, total debt). It follows that the DJIM screening conditions using market capitalization have become less restrictive over time.

Note that the average number of 193 stocks is consistent with the results reported in Derigs and Marzban (2008). This is a relatively high number and is expected to provide a sufficiently diversified portfolio, when the weights are sufficiently diversified (Statman, 1987). A similar conclusion holds for the Shariah screening based on the HSBC guidelines.

Importantly, the Shariah screening leads to a substantially different sector allocation compared with the original sector allocation of the S&P 500. This can be seen in Table 1
where, as a result of the Shariah screening, the financial sector is almost absent in the Shariah-compliant equity universe, while the non-financial sectors such as consumer staples, healthcare and information technology receive a substantially higher allocation, for all types of weighting methods considered. These sector bets are a direct consequence of the Shariah investment principles strictly prohibiting investing in firms with a relatively high income from interest (Derigs and Marzban, 2009; Khatkhatay et al., 2007).

Note also that, when using a market capitalization weighting approach, the Shariah portfolio tilts more towards energy, consumer staples, health care and information technology, while the equal-weighted and low risk portfolios tilt more towards the energy, materials, industrials, health, consumer staples and IT sectors.
Table 1: The effects of Shariah screening on the sector allocation in the S&P 500 universe.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Ener</th>
<th>Mat</th>
<th>Ind</th>
<th>C Disc</th>
<th>C Stap</th>
<th>Health</th>
<th>Fin</th>
<th>IT</th>
<th>TC</th>
<th>Uti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: No restrictions on the stock universe</td>
<td></td>
</tr>
<tr>
<td>Market Cap</td>
<td>9.85</td>
<td>5.32</td>
<td>11.60</td>
<td>13.21</td>
<td>11.76</td>
<td>11.79</td>
<td>14.45</td>
<td>12.33</td>
<td>5.35</td>
<td>4.28</td>
</tr>
<tr>
<td>Low Risk</td>
<td>5.66</td>
<td>6.77</td>
<td>11.34</td>
<td>9.01</td>
<td>14.72</td>
<td>8.07</td>
<td>15.72</td>
<td>2.78</td>
<td>3.64</td>
<td>22.64</td>
</tr>
<tr>
<td>Panel B: Shariah restricted (DJIM)</td>
<td></td>
</tr>
<tr>
<td>Market Cap</td>
<td>14.03</td>
<td>5.25</td>
<td>8.72</td>
<td>10.28</td>
<td>17.07</td>
<td>20.64</td>
<td>0.28</td>
<td>18.83</td>
<td>4.54</td>
<td>0.31</td>
</tr>
<tr>
<td>Fund</td>
<td>21.73</td>
<td>6.71</td>
<td>9.36</td>
<td>9.87</td>
<td>16.12</td>
<td>16.49</td>
<td>0.16</td>
<td>12.11</td>
<td>6.95</td>
<td>0.46</td>
</tr>
<tr>
<td>EW</td>
<td>7.03</td>
<td>10.32</td>
<td>14.84</td>
<td>16.94</td>
<td>12.03</td>
<td>16.23</td>
<td>0.68</td>
<td>19.76</td>
<td>1.74</td>
<td>0.38</td>
</tr>
<tr>
<td>Low Risk</td>
<td>9.19</td>
<td>9.71</td>
<td>15.72</td>
<td>10.20</td>
<td>27.28</td>
<td>17.88</td>
<td>0.62</td>
<td>4.83</td>
<td>3.17</td>
<td>1.34</td>
</tr>
<tr>
<td>Panel C: Shariah restricted (HSBC)</td>
<td></td>
</tr>
<tr>
<td>Fund</td>
<td>23.44</td>
<td>7.74</td>
<td>9.95</td>
<td>11.95</td>
<td>11.63</td>
<td>14.33</td>
<td>0.11</td>
<td>9.57</td>
<td>9.36</td>
<td>1.89</td>
</tr>
<tr>
<td>EW</td>
<td>9.27</td>
<td>12.44</td>
<td>16.78</td>
<td>17.94</td>
<td>8.64</td>
<td>14.33</td>
<td>0.34</td>
<td>16.18</td>
<td>1.88</td>
<td>2.16</td>
</tr>
<tr>
<td>Low Risk</td>
<td>11.13</td>
<td>8.96</td>
<td>15.10</td>
<td>9.55</td>
<td>19.06</td>
<td>17.59</td>
<td>0.37</td>
<td>4.44</td>
<td>5.14</td>
<td>8.60</td>
</tr>
</tbody>
</table>

Note: This table reports the average sector allocation of different portfolios based on three asset universes. The first asset universe is not restricted and is labeled as “None” which represents the overall market portfolio (all stocks of S&P 500). The second universe is restricted with Shariah screening guidelines of DJIM, and the third is restricted by Shariah guidelines of HSBC. Each asset universe is then further classified in to four different portfolios based on allocation strategies: market capitalization (Market Cap), fundamental weighting (Fund), equal-weight (EW) and low risk (Low Risk) strategies. The low risk portfolios are further restricted by selecting 100 less volatile stocks out of others. The weights are calculated with monthly rebalancing for the period (1986–2014). We adopt the Global Industrial Classification Standards System (GICS) for sector and sub-sector classification, where each company issuing equity has a unique sector code. Ener, Mat, Ind, C Disc, C Stap, Health, Fin, IT, TC, Uti represents energy, material, industry, consumer discretionary, consumer staples, health care, financial, information technology, telecommunication and utilities sectors respectively.
4.3. Weighted Shariah compliance of the portfolios

As advocated by Derigs and Marzban (2009), Shariah compliance should not only be evaluated at the individual stock level, but also at the portfolio level. Here we study how the choice of weighting method affects the weighted average performance of the portfolio in terms of achieving a low value for the following six indicator that are potentially relevant for a Shariah investor seeking to avoid ownership in activities with a too high proportion of liquid assets, or activities with a too high revenue from interests or activities that are financed by a high degree of leverage. More precisely, we consider the union of indicators used by DJIM and HSBC, namely (i) cash and short term investments divided by market capitalization, (ii) account receivables divided by market capitalization, (iii) total debt divided by market capitalization, (iv) account receivables plus cash and short term investments divided by total assets, (v) total debt divided by total assets and (vi) total interest divided by total revenue. Each of these indicators are available at the firm-level, and then a weighted average is computed using the corresponding portfolio weights, as explained in equation (1).

The resulting values of these Shariah compliance indicators are presented in Table 2. The lower the value, the more the portfolio is in agreement with the objectives of the Shariah compliant equity investment. Panel A shows the results for the various portfolio weighting methods when the investment universe is the S&P 500, while Panels B and C focus on the portfolios obtained using the restricted universes obtained using the DJIM and HSBC financial screens.

Comparing the results across panels, we of course see that, by construction, imposing the screening conditions reduces substantially the difference in the values of the Shariah compliance indicators. The improvements tend to be larger when using the DJIM screening conditions than when the HSBC conditions are used. In fact we see that it is only income from interest where the HSBC screens show less exposure with all the weighting methods. For the rest of interest screens i.e. account receivables, cash and short term investment and total debt the values of Shariah compliance indicators are much lower with DJIM criteria.

Finally, note that after applying the screening conditions, the choice of weighting method has only a second order effect. The most interesting result seems to be that the equal-weighted approach tends to perform worst in terms of the income received from interest and shows high exposure of 5.23% as compare to the 1.83% and 0.64% of fundamental and low risk strategies respectively. In terms of alternative weighting methods, the low risk strategy dominated the equal weighted and fundamental weighting strategies as it shows comparatively less exposure to all interest screens.
Table 2: Weighted performance of portfolios in terms of the six financial indicators used by DJIM and HSBC

<table>
<thead>
<tr>
<th></th>
<th>DJIM criteria</th>
<th></th>
<th>HSBC criteria</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc. Rec. (%)</td>
<td>CSI (%)</td>
<td>Debt (%)</td>
<td>AR + CSI (%)</td>
</tr>
<tr>
<td>Panel A: S&P 500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fund.</td>
<td>44.79</td>
<td>16.25</td>
<td>84.79</td>
<td>22.31</td>
</tr>
<tr>
<td>EW</td>
<td>43.49</td>
<td>19.68</td>
<td>64.33</td>
<td>23.12</td>
</tr>
<tr>
<td>Low-risk</td>
<td>24.66</td>
<td>8.90</td>
<td>47.80</td>
<td>17.25</td>
</tr>
<tr>
<td>Panel B: DJIM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mkt. Cap.</td>
<td>8.98</td>
<td>6.37</td>
<td>11.30</td>
<td>15.35</td>
</tr>
<tr>
<td>Fund.</td>
<td>10.68</td>
<td>6.28</td>
<td>14.67</td>
<td>16.96</td>
</tr>
<tr>
<td>EW</td>
<td>10.27</td>
<td>7.12</td>
<td>12.31</td>
<td>17.39</td>
</tr>
<tr>
<td>Low-risk</td>
<td>9.71</td>
<td>5.12</td>
<td>13.40</td>
<td>15.84</td>
</tr>
<tr>
<td>Panel B: HSBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mkt. Cap.</td>
<td>13.49</td>
<td>9.85</td>
<td>16.45</td>
<td>23.35</td>
</tr>
<tr>
<td>Fund.</td>
<td>13.44</td>
<td>7.93</td>
<td>17.65</td>
<td>21.37</td>
</tr>
<tr>
<td>EW</td>
<td>14.98</td>
<td>9.58</td>
<td>16.64</td>
<td>24.56</td>
</tr>
<tr>
<td>Low-risk</td>
<td>13.83</td>
<td>7.42</td>
<td>17.79</td>
<td>21.25</td>
</tr>
</tbody>
</table>

Note: This table reports the average weighted value of the six financial indicators used in the Shariah screening guidelines of DJIM and HSBC, namely: cash and short term investments divided by market capitalization, account receivables divided by market capitalization, total debt divided by market capitalization, account receivables plus cash and short term investments divided by total assets, total debt divided by total assets and total interest divided by total revenue. For the first three screens DJIM follow a threshold limit of 33% while for the last three screens the HSBC follow a threshold level of 50%, 30% and 5% respectively. The averages are computed over monthly rebalancing dates for the period 1986–2014, and weight each firm’s financial indicator with the firm’s weight in the portfolio, for each of the weighting methods considered. Panel A shows the results when the universe includes all S&P 500 firms, while panels B and C are the universe restricted by imposing the Shariah screening guidelines of DJIM and HSBC, respectively.

4.4. Methodology for performance evaluation

A major goal of this paper is to study the effect of the weighting method on the out-of-sample performance of Shariah-compliant equity portfolios. We characterize the performance in terms of reward and risk by analyzing the monthly returns over the period 1986–2014. The reward is gauged using the annualized average return, computed as twelve times the simple average monthly return. The risk of the investments is measured in three ways. First, the annualized volatility is computed as the volatility of the monthly returns and annualized with the square root of time rule. Second, we report the maximum value of the portfolio drawdowns, defined as the percentage loss from peak to trough. Third, the risk of monthly losses is measured through the 95% historical value-at-risk, computed as the 5% quantile of the monthly returns.
To analyze the impact in terms of risk-adjusted return, we further report the annualized Sharpe ratio and Jensen’s alpha estimated as the intercept from the Carhart four-factor model (Carhart, 1997).6

Because of the time-variation in performance, we report those statistics not only for the full period, but report also the results of a subsample analysis based on splitting the data around three major financial crises between 1986 and 2014. We identify those crises as the three periods reporting the largest drawdowns: Black monday (September 1987 – November 1988), Dot-com bubble (September 2000 – September 2002) and Financial crises (November 2007 – February 2009.)

The risk and return measures mentioned above are for the gross returns before transaction costs. Imposing the Shariah restrictions and the use of alternative portfolio weights tends to increase the portfolio turnover. To quantify this, we first report the time series average of the portfolio’s two-way turnover, defined as the sum of the absolute values of the transactions (both purchase and sales) needed to rebalance the portfolio weights, for all the \(N \) assets in the portfolio (DeMiguel et al., 2009). More precisely, the turnover for selection date \(t + 1 \) is given by:

\[
\text{Turnover}_{t+1} = \sum_{i=1}^{N} |w_{i,t+1} - w_{i,t+}|, \tag{7}
\]

where \(w_{i,t+1} \) is the new weight of security \(i \) at rebalancing time \(t + 1 \) and \(w_{i,t+} \) is the actual weight of security \(i \) before rebalancing at \(t + 1 \).

The net return corresponds to the gross return performance from which the transaction costs need to be deducted. Instead of assuming a specific value of the transaction cost, we follow Kritzman et al. (2012) by reporting the break-even transaction cost for which the annualized Sharpe ratio of the portfolio with higher Sharpe ratio (and higher turnover) equals the Sharpe ratio of the market capitalization-weighted portfolio. We assume the transaction costs to be proportional to the amount traded such that the net return is given by the gross return \(R_t \) from which the proportional transaction costs are deducted:

\[
R_{t+1}^{Net} = R_t - \tau \times \text{Turnover}_t, \tag{8}
\]

6The Sharpe ratio and Jensen’s alpha use the risky portfolio return in excess of the risk free rate. This can be analyzed in two ways. First, it could be seen as comparing the investment in a risky portfolio with an investment in the risk free investment. Since a risk free investment is not allowed in Shariah investing, we prefer the second interpretation that the excess return denotes the return on a risky portfolio that is financed by borrowing at the risk free rate.
where τ is the transaction cost per dollar traded. We then evaluate how much the Shariah investor is willing to pay in terms of transaction cost to switch from a low turnover strategy (using no Shariah restrictions and market capitalization weighting) to a higher turnover strategy (using Shariah restrictions and alternative weighting methods). We determine the break-even transaction costs as the value of τ for which the Sharpe ratio of the higher turnover strategy equals the reference investment with the lowest turnover.

5. Results

How do the Shariah restrictions and choice of portfolio weights affect investment performance? This paper is among the first to answer this empirical question using a long time span of stock-level return data for the universe of S&P 500 stocks over the period 1986–2014.7 In Subsection 5.1, we first present the results of the analysis on the impact of the Shariah restrictions on the portfolio performance. In Subsection 5.2, we show that the choice of weighting method has a substantial impact on the portfolio performance.

5.1. Effects of Shariah restrictions on portfolio performance

For the market capitalization-weighted, fundamental-weighted, equal-weighted and low risk approach to portfolio weighting, we compare the out-of-sample portfolio performance of using the S&P 500 universe versus its Shariah restricted version in Table 3. This table shows the annualized mean, volatility and Sharpe ratio of the different types of investment strategies, together with the measures of downside risk (value-at-risk 5% quantile), turnover and break-even transaction cost.

Let us first zoom in on the column “mean” indicating the effect of the Shariah investment decision and the weighting method on the annualized return. We find that, for the S&P 500 universe over the period 1986–2014, imposing the Shariah restriction tends to have a positive effect on the annualized mean returns and outperform the S&P 500 all stocks, hereafter called as market portfolio in all the four cases. For the market capitalization-weighted portfolio, the annualized mean is 56 basis points higher in case of the Shariah portfolio. Similarly, we find that for the fundamental-weighted equal-weighted and low risk portfolio, imposing the Shariah restriction leads to an outperformance in terms of annualized returns of 57, 68 and 226 basis points, respectively.

7Most other studies on the performance impact of Shariah restrictions compare the performance of Islamic and traditional funds (see, e.g., Ashraf, 2016, and the references therein).
The other columns of Table 3 indicate that the higher return obtained by imposing the Shariah restrictions comes at the price of a slightly higher value-at-risk, but a lower drawdown. For the market capitalization-weighted portfolio and the fundamental-weighted portfolio, the Shariah screening increases the turnover and leads to a small improvement in the volatility (14.97% vs 15.13%, 14.18% vs 14.59% respectively). For the low risk portfolio, which is invested in the 100 least volatility stocks, the additional condition of Shariah-compliance increases the portfolio turnover (18.78% against 22.21%). Because of the smaller scope of risk reduction when the universe is restricted by the Shariah screening conditions, the annualized volatility of the Shariah-compliant portfolio is substantially higher than when the low risk investor can invest in all S&P 500 stocks (annualized volatility of (13.08% vs 12.40%).

As in Walkshäusl and Lobe (2012), we find that in terms of Sharpe ratio, imposing the Shariah restriction leads for all portfolio allocations considered to a higher reward per unit of risk: a Sharpe ratio of 0.56 vs 0.52, 0.63 vs 0.58, 0.61 vs 0.57 and 0.76 vs 0.62 for the market capitalization-weighted, fundamental-weighted, equal-weighted and low risk-weighted portfolios, respectively. It is also interesting to observe that the Shariah restricted portfolio tends to have a less negative skewness and lower excess kurtosis.

5.2. Effects of the portfolio weighting methods on portfolio performance

In the previous subsection, we show that Shariah restricting the investment universe tends to have a positive impact on the long run out-of-sample performance. Our main contribution is, however, to study the impact of alternative weighting methods on the performance of Shariah-compliant investments.

The answer to this question is obtained by comparing the results across the different panels in Table 3. We see that, in terms of mean-variance performance, the market capitalization-weighted portfolio is dominated by the low risk portfolio. The latter has a higher annualized return (10.04% vs 7.96%) and a substantially lower volatility (13.08% vs 15.13%). In terms of Sharpe ratio, all the alternative weighting methods beat the market capitalization-weighted benchmark. We thus confirm that the findings of smart beta portfolios on general universes also apply to the Shariah restricted universe (see, e.g., DeMiguel et al. (2009) and Plyakha et al. (2014)) for the outperformance of equal weighting, and Blitz and van Vliet (2007) for low risk weighting).

Figure 2 reports also the downside risk of S&P 500 all stocks and Shariah restricted portfolios. The market capitalization-weighted portfolio experienced maximum 53.29% drawdown over the period 1986–2014. Such a high drawdown often leads to fund redemption.
The equal-weight market portfolio has relatively higher Sharpe ratio but is exposed to relatively higher drawdowns. Shariah restrictions tend to have positive effect on the drawdown for all the three weighting considered. However, it is the fundamental-weighted strategy and low risk strategy which result in the lowest drawdown among all portfolios when applied to the Shariah restricted version of S&P 500 all stocks.

5.3. Style analysis

So far we have demonstrated that, in terms of average return and Sharpe ratio, superior financial performance is achieved by the Shariah-restricted portfolios and alternative allo-

Table 3: Performance impact of Shariah restrictions and choice of weighting method when the DJIM Shariah guidelines are used

<table>
<thead>
<tr>
<th>Panel A: Market capitalization-weighted portfolio</th>
<th>Mean (%)</th>
<th>Vol (%)</th>
<th>SR</th>
<th>MDD (%)</th>
<th>VaR (%)</th>
<th>Skew</th>
<th>Kurt</th>
<th>TO (%)</th>
<th>BETC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 – all</td>
<td>7.96</td>
<td>15.13</td>
<td>0.52∗∗</td>
<td>53.29</td>
<td>−7.13</td>
<td>−0.79</td>
<td>2.58</td>
<td>2.97</td>
<td>−</td>
</tr>
<tr>
<td>Shariah (DJIM)</td>
<td>8.52</td>
<td>14.97</td>
<td>0.56∗∗</td>
<td>50.65</td>
<td>−6.85</td>
<td>−0.63</td>
<td>2.39</td>
<td>4.89</td>
<td>2.57</td>
</tr>
<tr>
<td>Shariah (HSBC)</td>
<td>8.22</td>
<td>14.55</td>
<td>0.56∗∗</td>
<td>52.20</td>
<td>−6.67</td>
<td>−0.74</td>
<td>2.44</td>
<td>4.71</td>
<td>2.29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Fundamental-weighted portfolio</th>
<th>Mean (%)</th>
<th>Vol (%)</th>
<th>SR</th>
<th>MDD (%)</th>
<th>VaR (%)</th>
<th>Skew</th>
<th>Kurt</th>
<th>TO (%)</th>
<th>BETC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 – all</td>
<td>8.47</td>
<td>14.59</td>
<td>0.58∗∗</td>
<td>51.85</td>
<td>−6.81</td>
<td>−0.79</td>
<td>2.78</td>
<td>6.70</td>
<td>1.56</td>
</tr>
<tr>
<td>Shariah (DJIM)</td>
<td>9.04</td>
<td>14.18</td>
<td>0.63∗∗</td>
<td>40.87</td>
<td>−6.38</td>
<td>−0.60</td>
<td>2.39</td>
<td>8.41</td>
<td>2.15</td>
</tr>
<tr>
<td>Shariah (HSBC)</td>
<td>8.76</td>
<td>14.31</td>
<td>0.61∗∗</td>
<td>44.35</td>
<td>−6.62</td>
<td>−0.73</td>
<td>2.30</td>
<td>8.28</td>
<td>1.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Equal-weighted portfolio</th>
<th>Mean (%)</th>
<th>Vol (%)</th>
<th>SR</th>
<th>MDD (%)</th>
<th>VaR (%)</th>
<th>Skew</th>
<th>Kurt</th>
<th>TO (%)</th>
<th>BETC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 – all</td>
<td>9.97</td>
<td>17.20</td>
<td>0.57∗∗</td>
<td>57.41</td>
<td>−7.89</td>
<td>−0.74</td>
<td>3.44</td>
<td>7.06</td>
<td>1.81</td>
</tr>
<tr>
<td>Shariah (DJIM)</td>
<td>10.65</td>
<td>17.44</td>
<td>0.61∗∗</td>
<td>47.27</td>
<td>−7.67</td>
<td>−0.49</td>
<td>3.01</td>
<td>9.35</td>
<td>1.87</td>
</tr>
<tr>
<td>Shariah (HSBC)</td>
<td>10.77</td>
<td>17.64</td>
<td>0.61∗∗</td>
<td>50.90</td>
<td>−7.85</td>
<td>−0.59</td>
<td>3.30</td>
<td>9.32</td>
<td>1.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel D: Low Risk portfolio</th>
<th>Mean (%)</th>
<th>Vol (%)</th>
<th>SR</th>
<th>MDD (%)</th>
<th>VaR (%)</th>
<th>Skew</th>
<th>Kurt</th>
<th>TO (%)</th>
<th>BETC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 – all</td>
<td>7.78</td>
<td>12.40</td>
<td>0.62∗∗</td>
<td>44.46</td>
<td>−5.84</td>
<td>−0.93</td>
<td>3.22</td>
<td>18.78</td>
<td>0.05</td>
</tr>
<tr>
<td>Shariah (DJIM)</td>
<td>10.04</td>
<td>13.08</td>
<td>0.76∗∗</td>
<td>36.14</td>
<td>−5.82</td>
<td>−0.79</td>
<td>4.04</td>
<td>22.21</td>
<td>1.23</td>
</tr>
<tr>
<td>Shariah (HSBC)</td>
<td>9.64</td>
<td>13.00</td>
<td>0.74∗∗</td>
<td>36.37</td>
<td>−5.89</td>
<td>−0.80</td>
<td>3.19</td>
<td>22.97</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Note: This table reports the annualized mean (Mean (%)), annualized volatility (Vol (%)), Sharpe ratio (SR), drawdown (MDD (%)), VaR (95% confidence interval), skewness (Skew), kurtosis (Kurt), Turnover (TO) and break-even transaction costs (BETC, in cents per dollar traded) for Shariah restricted portfolios and S&P 500 all stocks. For the Sharpe ratio, the table also shows the results of significance tests, where *, **, and *** indicate that the Sharpe ratio differ significantly from the Sharpe ratio of the market capitalization portfolio on all S&P 500 stocks and the Shariah-compliant (DJIM) market capitalization portfolio, respectively, at the 10%, 5%, and 1% levels based on the t-test with HAC standard errors. We present the results in four panels. Each panel is representing the two universes i.e. the unrestricted S&P 500 all stocks and Shariah restricted. The Shariah guidelines of DJIM are used in the main analysis while Shariah guidelines of HSBC are used in the robustness analysis. Calculations are based on monthly data for the period of 1986–2014.
Figure 2: Drawdowns of monthly rebalanced portfolios invested in the universe of Shariah-compliant S&P 500 stocks over the period 1986–2014

Note: This figure shows the time series of monthly drawdowns of the four portfolios invested in Shariah-compliant S&P 500 stocks using the market capitalization-weighted, fundamental-weighted, equal-weighted and low risk allocation strategies. The series of drawdown shows the extent of loss incurred by a Shariah portfolio since the last peak. The drawdown series is calculated with cumulative net asset value of each Shariah portfolio with monthly rebalancing for the period 1986–2014.

cation strategies compared with the market capitalization-weighted portfolio invested in all S&P 500 stocks over the period 1986–2014. However, it is important to know whether this outperformance is driven by exposure to the risk-factors. In this subsection, we use the standard four-factor model of Fama and French (1992) and Carhart (1997) to examine whether the alternative weighted Shariah portfolios exhibit size, value, growth and momentum tilts, and whether the style-adjusted return has a positive and significant alpha. The results of the regression are reported in Table 4.

Results show that the risk-adjusted returns (Jensen’s Alpha) increase when the unrestricted benchmark is restricted with Shariah guidelines. The fundamental-weighted, the
equal-weighted and low risk Shariah portfolios are able to generate slightly higher alpha compared with the similarly weighted benchmark. In terms of the effect of the weighting method, we find that, for all weighting methods considered, the Shariah-restricted portfolio outperforms its unrestricted counterpart using the same weighting approach.

In terms of risk factor exposure, we see in Table 4 that the Carhart factors explain more than 73% of the return variation of the Shariah restricted smart beta portfolios. It is important to note that the exposures are different from the market capitalization-weighted portfolio exposures. This holds in particular for the low risk portfolio, which has a lower market exposure. This explains why it tends to underperform the market portfolio in bull markets and outperform it in bear markets. It is also important to see the change in the factor exposures because of the Shariah restriction not to invest in the financial sector. As already shown in the weight allocations, this restriction tilts the portfolio toward growth stocks (information technology). This growth tilt in Shariah portfolio is consistent with the findings of Hoepner et al. (2011) and Walkshäusl and Lobe (2012). The low risk strategy does not have this growth tilt, because it is only invested in the one hundred least risky stocks, which tend to be value stocks.

These findings further strengthen the analysis of raw performance demonstrated in the previous sections. The superior performance of equal weighting in terms of alpha is due to the contrarian nature of this allocation technique. The monthly rebalancing with equal weighting provides naive diversification and is able to exploit stock price reversals (Jegadeesh, 1990; Jegadeesh and Titman, 1993, 2002). The results for superior performance of alternative weighting approaches on a restricted investment universe is consistent with the findings of Bertrand and Lapointe (2015), however, their restricted universe is based on socially responsible investment screening rather than Shariah-compliant screening guidelines.8

8While Shariah-compliant equity investing is considered to be conceptually close to socially responsible investing (SRI), the Shariah-compliant equity universes are very different from those obtained using traditional SRI screens. For example, in contrast with the SRI universe, a Shariah-compliant equity universe typically has a large proportion of industrial and energy firms, while virtually not investing in financial firms (Erragragui and Revelli, 2016).
Table 4: Alpha and factor exposures obtained using the four-factor Fama-French-Carhart model to explain the monthly 1986–2014 excess portfolio returns, when the universe consists of the (Shariah-compliant) S&P 500 stocks and market capitalization, fundamental value, equal weighting and low risk weighting are used.

<table>
<thead>
<tr>
<th>Panel A: Market capitalization-weighted portfolio</th>
<th>Alpha</th>
<th>MKT</th>
<th>SMB</th>
<th>HML</th>
<th>MOM</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>S&P 500 – all</td>
<td>0.001*</td>
<td>0.96***</td>
<td>0.18***</td>
<td>0.03</td>
<td>0.03***</td>
<td>0.96</td>
</tr>
<tr>
<td>Shariah (DJIM)</td>
<td>0.000</td>
<td>0.90***</td>
<td>0.20***</td>
<td>0.20***</td>
<td>0.01</td>
<td>0.92</td>
</tr>
<tr>
<td>Shariah (HSBC)</td>
<td>0.000</td>
<td>0.89***</td>
<td>0.21***</td>
<td>0.08***</td>
<td>0.00</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Panel B: Fundamental-weighted portfolio						
S&P 500 – all	0.000	0.89***	0.15***	0.19***	0.10***	0.92
Shariah (DJIM)	0.002	0.85***	0.22***	0.01	0.07***	0.89
Shariah (HSBC)	0.000	0.86***	0.19***	0.07***	0.07	0.89

Panel C: Equal-weighted portfolio						
S&P 500 – all	0.000	1.02***	0.03***	0.24***	0.16***	0.92
Shariah (DJIM)	0.001	0.99***	0.03	0.01	0.15***	0.88
Shariah (HSBC)	0.000	1.02***	0.05	0.12***	0.15***	0.88

Panel D: Low risk portfolio						
S&P 500 – all	0.001	0.71***	0.26***	0.30***	0.03	0.76
Shariah (DJIM)	0.000*	0.75***	0.26***	0.19**	0.06	0.73
Shariah (HSBC)	0.000	0.75***	0.25***	0.25***	0.05***	0.75

Note: This table reports the results of 4-factor momentum model Carhart (1997). We regress the monthly returns of the considered portfolios (in excess of the risk free rate) on the constant, market excess returns (MKT), Small Minus Big returns (SMB), High Minus Low returns (HML) and Momentum Factor “Winners Minus Losers” (MOM), using monthly returns for the period January 1986 to July 2014 with monthly rebalancing. The results are presented in four panels, each representing both S&P 500 all stocks and Shariah portfolio. Panel A represents the results for market capitalization strategy, panel B is based on the fundamental-weighted portfolio, panel C reports Equal-weighted portfolios and panel D represents the low risk portfolios either on the complete S&P500 universe or after applying the Shariah screening conditions. We present here the intercept(Alpha), the corresponding coefficients (beta) for the factors, and the R² of the regression. ***,** and * represent the significance levels at the 1%, 5%, and 10% level, respectively, based on the t-test with HAC standard errors.

5.4. Turnover analysis

The main results on the relative performance of the Shariah-compliant market capitalization-weighted portfolio compared with the alternative allocation methods are in favor of the latter. The former has, however, the advantage of a lower turnover. The second last column
of Table 3 shows the turnover of the portfolios.

A first important observation is that the turnover of the Shariah-compliant portfolios depends on the weighting method used. In case of market capitalization weighting and fundamental weighting it increases from 2.97% to 4.89% and 6.70% to 8.41% respectively, due to the Shariah restrictions. For equal weighting and low risk strategy, the turnover is 7.06% and 18.78% on the S&P 500 universe and increases to 9.35% and 22.21%, when imposing the Shariah screens.

Turnover decreases the net returns. As explained in Subsection 4.3, since the higher turnover strategies have a higher Sharpe ratio than the plain-vanilla market capitalization-weighted approach on the S&P 500 universe, we can compute the break-even transaction costs in terms of cost per dollar traded to equalize the performance in terms of net returns. The higher the break-even transaction costs (in cents per dollar traded), the more robust the outperformance is with respect to transaction costs.

The results of the break-even analysis are presented in last column of Table 3. The break-even transaction costs are always positive and larger than one cent per dollar traded. This indicates that the profitability is robust to the presence of transaction costs.9 Compared with the traditional market capitalization-weighted portfolios, the highest gains, as measured by the break-even transaction costs, are achieved by imposing the Shariah screening conditions. Smaller, but still economically significant gains are obtained by the use of the alternative weighting approach of using low risk weighting or equal weighting, especially when combined with Shariah screening.

6. Robustness

In this section, we test the robustness of our results against alternative implementations of the Shariah guidelines in screening the investment universe, and with respect to the period of analysis.

6.1. Alternative choice of Shariah restrictions

The consensus among Shariah scholars is that there must be both qualitative and quantitative screens in selecting the Shariah-compliant stocks, but the actual choice of quantitative

9DeMiguel et al. (2009) note that a realistic value for the proportional transaction cost is around 50 basis points, thus 0.5 cents per dollar traded. Their reference value is based on studies conducted on NYSE stocks in the nineties. Since then, transaction costs have further diminished. Furthermore, when the application is on building smart Shariah equity portfolios, the replication strategy may be synthetic and thus leading to an even lower implementation cost.
screens may vary significantly in terms of financial ratios, threshold level and divisor between the leading Islamic equity index providers (S&P Shariah, DJIM, FTSE, MSCI and HSBC Amanah). Broadly speaking, these guidelines can be classified into two groups based on the difference in denominator in financial ratios, i.e. the use of market capitalization versus the use of the total assets value. DJIM and S&P Shariah use nearly identical financial ratios, threshold levels and market capitalization as divisor. In contrast, HSBC Amanah, FTSE and MSCI use total assets as a divisor in financial ratios. The differences in these two groups have an impact on the outcomes of stock screening. The Shariah-compliant universe obtained varies in the number of stocks and leads to different sector allocations, as can be seen in Figure 1 and Table 1, respectively. The Shariah screening guidelines based on total assets results in relatively larger compliant assets universe. The average number of Shariah-compliant stocks with HSBC guidelines is 202 which is higher than the universe obtained by using DJIM criteria. In comparison to DJIM, the HSBC universe shows more exposure to energy, materials, telecommunication and utility sectors with market capitalization weighting strategy. Similarly the HSBC criteria shows more exposure to the consumer discretionary telecommunication and utility sector with fundamental weighting. However, when using the low risk or equal weighting methods, the average allocation in consumer staples, health care and information technology is reduced and relatively larger weights are assigned to the utilities and telecommunication sectors.

These differences in terms of cardinality and sector allocations are expected to affect the performance of the Shariah-compliant portfolios. Table 3 shows the raw and risk adjusted performance, using the HSBC criteria. Comparing it with the main results using the DJIM criteria in Table 3, we find that, also using the HSBC Shariah screening rules, the performance is improved by imposing the Shariah screening and the use of alternative weighting methods, but that the gains are smaller than when the DJIM screening criteria are used. This is in contrast with Obaidullah (2005), who favored strategies with book value of total assets as divisor, but consistent with Derigs and Marzban (2009), who observed superior performance when using market capitalization as a divisor in the Shariah screening conditions (see Subsection 3.1).

6.2. Choice of the sample period

The main results are presented for the full sample period 1986–2014. Over this period, we find an outperformance of the fundamental weighting, equal weighting and low risk weighting compared with market capitalization weighting, and also that Shariah screening tends to improve performance. However, the actual relative performance is likely to be time-
dependent. For instance, the low risk strategy which overweights low beta stocks, tends to underperform the market capitalization-weighted portfolio in bull markets, and outperform in bear markets. Similarly, the equal weighting approach is a value strategy which benefits from price reversals. We therefore expect the low risk portfolio to be less exposed to a market downturns, and that for the fundamental-weighted portfolio and the equal-weighted portfolio, it depends on the nature of the market drop.
Panel D is based on low risk portfolios. Panel B represents fundamental-weighted portfolios, Panel C is based on Equal-weighting and four panels each showing S&P 500 all stocks and Shariah restricted assets universe. Panel A shows the market crashes.

We report all the major crises, the bullish markets, pre crises and post crises. The crises are those periods with the largest drawdown in terms of cumulative loss from the peak to trough. The results are presented in four panels each showing S&P 500 all stocks and Shariah restricted assets universe. Panel A shows the market crises.

Table 5: Performance impact of Shariah restrictions and choice of weighting method when the DJIM Shariah guidelines are used.

<table>
<thead>
<tr>
<th></th>
<th>Jan 91</th>
<th>Sep 91</th>
<th>Dec 91</th>
<th>Sep 92</th>
<th>Oct 92</th>
<th>Nov 92</th>
<th>March 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shariah restricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (%)</td>
<td>33.49</td>
<td>-18.07</td>
<td>16.44</td>
<td>27.57</td>
<td>11.85</td>
<td>-32.68</td>
<td>22.17</td>
</tr>
<tr>
<td>Vol (%)</td>
<td>17.45</td>
<td>24.36</td>
<td>13.52</td>
<td>18.90</td>
<td>10.42</td>
<td>17.29</td>
<td>11.87</td>
</tr>
<tr>
<td>SR</td>
<td>1.91</td>
<td>-0.74</td>
<td>1.21</td>
<td>-1.45</td>
<td>1.13</td>
<td>-1.89</td>
<td>1.69</td>
</tr>
</tbody>
</table>

Panel B: Fundamental-weighted portfolio

<table>
<thead>
<tr>
<th></th>
<th>Jan 91</th>
<th>Sep 91</th>
<th>Dec 91</th>
<th>Sep 92</th>
<th>Oct 92</th>
<th>Nov 92</th>
<th>March 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shariah restricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (%)</td>
<td>35.24</td>
<td>-15.75</td>
<td>13.58</td>
<td>-19.64</td>
<td>13.98</td>
<td>-32.06</td>
<td>21.36</td>
</tr>
<tr>
<td>Vol (%)</td>
<td>16.94</td>
<td>23.12</td>
<td>12.41</td>
<td>16.80</td>
<td>10.74</td>
<td>17.57</td>
<td>12.05</td>
</tr>
<tr>
<td>SR</td>
<td>2.08</td>
<td>-0.68</td>
<td>1.09</td>
<td>-1.16</td>
<td>1.30</td>
<td>-1.82</td>
<td>1.77</td>
</tr>
</tbody>
</table>

Panel C: Equal-weighted portfolio

<table>
<thead>
<tr>
<th></th>
<th>Jan 91</th>
<th>Sep 91</th>
<th>Dec 91</th>
<th>Sep 92</th>
<th>Oct 92</th>
<th>Nov 92</th>
<th>March 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shariah restricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (%)</td>
<td>34.90</td>
<td>-16.69</td>
<td>15.02</td>
<td>-18.14</td>
<td>16.54</td>
<td>-36.93</td>
<td>27.02</td>
</tr>
<tr>
<td>Vol (%)</td>
<td>19.99</td>
<td>28.51</td>
<td>14.83</td>
<td>22.75</td>
<td>10.53</td>
<td>22.68</td>
<td>15.61</td>
</tr>
<tr>
<td>SR</td>
<td>1.74</td>
<td>-0.58</td>
<td>1.01</td>
<td>-0.79</td>
<td>1.22</td>
<td>-1.63</td>
<td>1.73</td>
</tr>
</tbody>
</table>

Panel D: Low risk portfolio

<table>
<thead>
<tr>
<th></th>
<th>Jan 91</th>
<th>Sep 91</th>
<th>Dec 91</th>
<th>Sep 92</th>
<th>Oct 92</th>
<th>Nov 92</th>
<th>March 92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shariah restricted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (%)</td>
<td>36.28</td>
<td>-12.63</td>
<td>11.93</td>
<td>0.00</td>
<td>11.94</td>
<td>-28.23</td>
<td>19.86</td>
</tr>
<tr>
<td>Vol (%)</td>
<td>18.93</td>
<td>23.40</td>
<td>13.70</td>
<td>12.53</td>
<td>6.88</td>
<td>17.41</td>
<td>9.09</td>
</tr>
<tr>
<td>SR</td>
<td>1.91</td>
<td>-0.53</td>
<td>0.94</td>
<td>0.06</td>
<td>1.73</td>
<td>-1.62</td>
<td>2.18</td>
</tr>
</tbody>
</table>

Note: This table shows the performance statistics of Shariah portfolios for different Choice of sample period. We report all the major crises, the bullish markets, pre crises and post crises. The crises are those periods with the largest drawdown in terms of cumulative loss from the peak to trough. The results are presented in four panels each showing S&P 500 all stocks and Shariah restricted assets universe. Panel A shows the market crises.
In the Islamic finance literature, some authors argue that Shariah-compliant portfolios tend to perform better in economic crises (see, e.g., Alam and Rajjaque, 2010; Ashraf and Mohammad, 2014; Reddy and Fu, 2014), while others emphasize that the relative performance of the Shariah restricted portfolios compared with the conventional portfolios depends on the type of crisis (see, e.g., Nainggolan et al., 2015). We agree with the latter and expect that, for our S&P 500 universe, the Shariah-compliant market capitalization-weighted portfolio will tend to underperform in the Black Monday and the Dot Com equity crises and outperform in the 2008 global financial crisis. In fact, because of the overweighting of technology stocks and underweighting of financial stocks, it is natural to expect that the Shariah-compliant portfolio is more exposed to a correction in technology stock valuation, such as the burst of the internet bubble, than to a crisis in the banking sector. We investigate this hypothesis in Table 5, where we present the performance measure per sub period, based on splitting the subsample around the three major financial crises in the 1986–2014 US equities market: Black Monday, the Dot Com bubble and the Global Financial Crises.

We see that, in the first two major crises the Shariah-compliant portfolios underperform the market portfolio, while in the global financial crises these portfolios generate superior performance. We also find that the impact depends on the weighting method. As expected, the low risk portfolio is more resilient and has the smallest losses in case of a market downturn.

7. Conclusion

A Shariah-compliant equity portfolio is the result of first screening the universe for permissible stocks and then deciding on the portfolio weights. In general, the Shariah-compliant investment community is rather explicit on the motivation for the stock exclusion criteria, but silent on the choice of weighting method. Most often, market capitalization weighting is used. In this article, we contribute to the paradigm of Derigs and Marzbán (2009) that Shariah-compliance should not only be seen as an attribute at the individual asset level, but also at the portfolio level. It implies that, even when a so-called Shariah compliant equity universe has been obtained using sector and financial screens, the objective of Shariah-compliance may still lead to preferences in terms of the weighting method used. We investigate this by comparing the traditional approach of market capitalization weighting with the alternatives of equal-weighting, fundamental-weighting and low risk weighting. We provide theoretical and empirical arguments that, in some cases, the alternative weighting methods are to be preferred over the use of market capitalization weights, both in terms
of achieving the primary objectives of Shariah investing, and in terms of the secondary objective of optimizing the financial risk-adjusted performance. In fact, for the period 1986–2014, we show that these three alternative weighting methods lead to a better risk-adjusted performance for the Shariah restricted S&P 500 universe. Our second contribution is thus to provide empirical evidence to the increasing literature questioning the efficiency of market capitalization based equity weighting. We show that this result also holds for the Shariah restricted portfolios.

The bottom line of this paper is that the recent popularity of smart beta portfolio allocations in conventional equity portfolio investing can be expected to lead to improvements in the design of Shariah-compliant equity portfolios. Alternative choices of weighting like the use of fundamental weighting, equal weighting and low risk investing can be seen as more adhering to the Shariah investment principles, and, over sufficiently long investment horizons, they tend to have a better risk-adjusted performance, as shown in this paper for the Shariah-compliant stocks in the 1986–2014 S&P 500 universe. Further research is needed to confirm the robustness of our findings with respect to non-US stocks.

References

