FINVEX WHITE PAPER ON ASSET ALLOCATION
WITH RISK FACTORS

By

Dr Kris Boudt PhD
Professor of Finance & Research Partner at Finvex Group

Benedict Peeters
Co-Founder Finvex Group

July 2013
Executive Summary

In this paper, we will present in a simple way a new approach to asset allocation. The idea is to build portfolios that offer diversification over so called ‘risk factors’ and this within a minimum variance portfolio construction framework. We believe this approach is an important advancement compared to traditional asset allocation as it achieves a higher level of true risk diversification, taking into account the common and unique risk factors that each asset class is exposed to.

In a previous working paper on bond-equity allocation, we have stressed the shift in the investment paradigm from return-based to risk-based portfolio allocation. Especially the equal risk contribution (ERC) approach is very popular in asset allocation: portfolio weights are dynamically set such that the asset classes contribute equally to the portfolio risk. As such, the portfolio loads automatically less on the more risky asset and, by diversifying across asset classes, portfolio drawdowns are reduced.

A potential weakness of the ERC approach is that it may not guarantee sufficient diversification across risk factors, especially in the case where asset classes are strongly correlated. Consider e.g. an ERC portfolio invested in a bond, equity and convertible bond index. Clearly, the three asset classes have common risk exposures. Depending on the bond/equity exposure of the convertible bond index, an ERC constraint at the asset class level may lead to a concentration of portfolio risk into the underlying bond or equity risk.

We argue that, for asset allocation, not only the risk contribution of the assets, but also the risk contributions of the factors are important elements to consider in the portfolio decision. To identify such sources, we propose the use of a linear factor model that decomposes the risk of an asset class into the exposure to directly observable risk factors explaining the comovement across asset classes and the idiosyncratic asset-specific risk factors that can be identified in the return series of the asset classes.

We are also the first to emphasize the importance of shrinkage estimators for these applications where the number of parameters to estimate is large compared to the number of available observations.

We provide two applications of the proposed risk factor contribution methodology for a portfolio invested in EU government bonds, EU corporate bonds, EU high yield bonds and European equity. The first application consists of an ex-post factor risk contribution analysis where we decompose the portfolio risk into the risk associated to the economic activity, inflation, interest rate, exchange rate, credit risk and market risk. In the second application we construct minimum variance portfolios that satisfy ex-ante constraints on the factor risk contributions.
Introduction

Risk-based portfolio solutions are portfolio allocation techniques that do not require explicit modelling of expected returns. In asset allocation, the equal risk contribution (ERC) approach is very popular: portfolio weights are dynamically set such that the asset classes contribute equally to the portfolio risk. As such, the portfolio loads automatically less on the more risky asset and, by diversifying across asset classes, portfolio drawdowns are reduced.

An important caveat when constructing ERC portfolios is that the power of diversification of the equal risk contribution constraint depends on the underlying assets. When those assets are very dependent on underlying common risk factors, the portfolio risk may effectively be very concentrated in a few underlying risk factors.

We propose to unravel this ‘hidden’ risk concentration through the use of linear factor models, in which the asset returns are rewritten as a linear combination of returns coming from exposure to common risk factors and the component that is specific to the asset class. We assume those risk factors to be observable and that all relevant risk factors are included.

The same parametric setup is taken in the related work of Roncalli and Weisang (2012) on risk parity portfolios with risk factors. In order to calculate the factor risk contributions, we then need to rewrite the portfolio return as an exact linear combination of factors. We follow Zivot (2011) in defining the set of factors of the joint set of risk factors specified by the modeller and the unexplained variation in the stock returns (called idiosyncratic risk factors). The common risk factors can of course be correlated, while the idiosyncratic risk factors are assumed to be uncorrelated.

Roncalli and Weisang (2012) follow Meucci (2007) in calculating the factor risk contributions in one step. In our view, this comes at the price of tractability. Zivot (2011) proposes a two-step approach of first estimating the exposures by ordinary least squares. Given those exposure, one can then calculate the factor risk contributions in an analogous way as the asset risk contributions are calculated. As such, more tractable analytical expressions are obtained for the factor risk contributions.

Importantly, this two-step framework also allows more flexibility in the choice of estimation methods. In fact, our application is on asset allocation for which macroeconomic factors are crucial determinants of the asset returns. Many of these factors can only be observed at a quarterly frequency. Because of the relatively large number of parameters to estimate compared to the number of observations, we recommend not to use the ordinary least squares and sample covariance estimators, but so-called shrinkage estimators in which the estimates are “de-noised”.

We focus on portfolio standard deviation as a risk measure, but, under the assumption of elliptical symmetry or using simulation methods, the approach can be extended to downside risk measures such as value-at-risk and expected shortfall.
In what follows, we first review the methodology of factor risk analysis. We then illustrate the differences between asset risk contributions and factor risk contributions for a portfolio invested in EU government bonds, EU corporate bonds, EU high yield bonds and European equity. We further illustrate the effect on the portfolio weight allocation of constraining the percentage risk contribution of the underlying risk factors. Finally, for all portfolios considered, an out-of-sample return analysis is performed to illustrate the effects of the imposed risk diversification on the portfolio returns.
Proposed Methodology

Suppose we have N assets with covariance matrix Σ and a portfolio vector $w=(w_1, \ldots, w_N)'$.

The portfolio standard deviation is given by:

$$\sigma(w) = \sqrt{w'\Sigma w}.$$

For portfolio risk management purposes, it is important to disentangle the different sources of portfolio risk.

Attribution of portfolio volatility to the portfolio assets

In a first step we use the Euler decomposition to break down the portfolio volatility into the volatility contributions of each asset and represent these component risk measures as a percentage of total portfolio risk. The percentage volatility risk contribution of the ith asset in the portfolio is given by:

$$\%ARC_i = \frac{1}{\sigma(w)} \frac{\partial \sigma(w)}{\partial w_i} = \frac{w_i (\Sigma w)_i}{w' \Sigma w}$$

(see e.g. Boudt, Carl and Peterson, 2012).

Attribution of portfolio volatility to the underlying risk factors

The percentage asset contributions to portfolio volatility provide insight in the distribution of risk across the portfolio assets, but, in some regards, it is still superficial as it does not reveal any economic insight in how risk factors drive the portfolio risk. In fact, a common view is to consider that the variation in asset returns is driven by multiple macroeconomic factors and idiosyncratic factors that are specific to each asset.

The use of such factor models is now widespread. It has been used by Ross (1976) to derive expected returns under no arbitrage assumptions (the so-called Arbitrage Pricing Theory). Very often, it is used without any further assumptions, as a descriptive tool to inspect the exposures of an investment style.

To introduce the methodology, we first enumerate the assumptions of the linear factor model and the implications it has for the structure of the covariance matrix and the portfolio variance. We then derive the percentage factor risk contributions and discuss some of the estimation issues that arise in the practical implementation.
The linear factor model

Suppose that \(K \) observable factors are identified as being influential for the portfolio variability. At a given frequency (e.g. monthly or quarterly), the asset returns \(r_t=(r_{1t}, \ldots, r_{Nt})' \) and the factors \(f_t=(f_{1t}, \ldots, f_{Kt})' \) are recorded.

The asset returns are assumed to depend linearly on the factors, whereby the variation in the asset returns that is not explained by the factors, is assumed to be uncorrelated with each of the factors and also to be uncorrelated across assets. Explain that this is ok although simplified. The linear approach leads to the following system of equations:

\[
\begin{bmatrix}
 r_{1t} \\
 r_{2t} \\
 \vdots \\
 r_{Nt}
\end{bmatrix} =
\begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_N
\end{bmatrix} +
\begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1K} \\
 b_{21} & b_{22} & \cdots & b_{2K} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{N1} & b_{N2} & \cdots & b_{NK}
\end{bmatrix}
\begin{bmatrix}
 f_{1t} \\
 f_{2t} \\
 \vdots \\
 f_{Kt}
\end{bmatrix} +
\begin{bmatrix}
 \sigma_1 & 0 & \cdots & 0 \\
 0 & \sigma_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \sigma_N
\end{bmatrix}
\begin{bmatrix}
 e_{1t} \\
 e_{2t} \\
 \vdots \\
 e_{Nt}
\end{bmatrix}.
\]

The covariance matrix of \(e_t=(e_{1t}, \ldots, e_{Nt})' \) is the identity matrix and \(e_t \) has mean zero. In matrix notation, the system is given by:

\[
r_t = a + Bf_t + De_t.
\]

Let \(S \) be the \(K \times K \) covariance matrix of the \(K \) factors. Because of the assumption that the unexplained asset return variation \(e_t \) is uncorrelated with the factors, we can rewrite \(\Sigma \) (the \(N \times N \) covariance matrix of the \(N \) asset returns) as:

\[
\Sigma = BSB' + D.
\]

Our interest is in explaining the portfolio return. Premultiplying the asset return by the portfolio weight vector gives us the portfolio return:

\[
w'r_t = w'a + w'Bf_t + w'De_t
\]

\[
= \alpha + \beta'f_t + \delta'e_t,
\]

with \(\delta=w'B \) the \(K \times 1 \) row-matrix of exposure of the portfolio return to each of the factors and \(\delta=w'D \) the \(K \times 1 \) row-matrix of exposure of the portfolio return to each of the asset-specific factors. Following Zivot (2011), we join these two exposures in the vector \(\gamma \) of size \(K+N \):

\[
w'r_t = \alpha + \begin{bmatrix} \beta' \\ \theta \end{bmatrix}' \begin{bmatrix} f_t \\ e_t \end{bmatrix} = \alpha + \gamma' \begin{bmatrix} f_t \\ e_t \end{bmatrix}.
\]

The joint covariance matrix of \(f_t \) and \(e_t \) is
Percentage factor risk contributions under the linear factor model

Under the linear factor model the portfolio volatility can thus be written as

$$\sigma(\gamma) = \sqrt{\gamma' \Theta \gamma}.$$

In an analogous way to the percentage volatility contribution of the ith asset, the percentage volatility risk contribution of the ith factor is given by:

$$\%\text{FRC}_i = \frac{1}{\sigma(\gamma)} \frac{\partial \sigma(\gamma)}{\partial \gamma_i} = \frac{\gamma_i (\Theta \gamma)_i}{\gamma' \Theta \gamma}.$$

Because of the one-homogeneity of $\sigma(\gamma)$ (i.e. the property that $\sigma(k\gamma) = k \sigma(\gamma)$), the percentage factor risk contributions add up to one.

Implementation

For the effective calculation of the percentage risk contributions at the level of the individual assets and factors, we need to estimate the covariance matrix of the asset returns (Σ), the covariance matrix of the factors (S) and the factor exposures γ. The traditional approach is to use the sample covariance estimator and the ordinary least squares estimate. But, as mentioned in the introduction, in our setup we typically have a large number of parameters to estimate and a small number of observations. In such cases, the sample covariance matrix and least squares estimates are known to be unreliable and shrinkage estimators perform better.

Several shrinkage methods exist. We will use the covariance shrinkage estimator of Ledoit and Wolf (2003) and base all our estimates on the Ledoit-Wolff shrinkage estimate of the covariance matrix of the asset return and factors, jointly. The factor exposures implied by this estimated covariance matrix are obtained following Engle (2012)
Applications in risk monitoring and portfolio allocations

The proposed methodology has important applications in monitoring the portfolio risk as well as in the design of optimal portfolios. Next we illustrate both applications for the universe of European government bonds, corporate bonds, high yield bonds and equity. The data source is Bloomberg.1

As some of the macro-factors that we will consider are only available at a quarterly frequency, we consider quarterly rebalancing of the portfolio.

The cumulative return evolution of each of the asset classes over the period 1999-2012 is shown in Figure 1. Besides the differences in volatility and return over the period, the graph clearly shows the diversification potential across the different investment styles.

The shaded area in Figure 1 corresponds to the out-of-sample evaluation period used to compare the different portfolio allocation strategies. Panel 1 of Table 2 summarizes the return performance of the four asset classes over this period. Over this period, the worst performing asset class in all aspects is EU equity with an average annualized return of 1.8%, a volatility of 16.8% and a maximum drawdown of 54%. The corporate and government bond indices perform similarly with returns of 5% and a standard deviation between 4% and 5%. The high yield bond index has over the period the highest return (9.3%) with an annualized volatility of 15%.

We consider 13 economic factors that we have grouped into six categories:

1. Activity: EU GDP growth, industrial production growth and the economic sentiment index as published by the European Commission;
2. Inflation: consumer prices and commodity prices;
3. Interest rate: real interest rate and slope of the yield curve;
4. Currency: percentage changes real effective exchange rate;

The first four categories are also considered in the risk factor analysis of Roncalli and Weisang (2012). The data frequency used is quarterly.

1 For the asset classes, the index names are Bloomberg/EFFAS Bond Indices (EUGATR), IBOXX € CRP OA TR (EU government bonds), Pan-European High Yield and MSCI EUROPE NR.
Figure 1 Quarterly cumulative value of EU government bond, corporate bond, high yield bond and equity index low risk, value and equal risk contribution low risk-value portfolio versus the market portfolio for a global universe over the period December 1998-December 2012. The grey area indicates the out-of-sample evaluation period.

Table 2 Monthly returns analysis of single-asset strategies and dynamically rebalanced asset allocation portfolios over the period August 2006 – December 2012.

<table>
<thead>
<tr>
<th>Panel 1: Single-asset class strategies</th>
<th>Annualized return</th>
<th>Annualized standard deviation</th>
<th>Sharpe ratio (RF=0)</th>
<th>Max drawdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government bonds</td>
<td>4.8%</td>
<td>4.3%</td>
<td>1.114</td>
<td>-6.7%</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>5.0%</td>
<td>4.7%</td>
<td>1.058</td>
<td>-8.0%</td>
</tr>
<tr>
<td>High yield bonds</td>
<td>9.3%</td>
<td>15.0%</td>
<td>0.618</td>
<td>-37.6%</td>
</tr>
<tr>
<td>Equity</td>
<td>1.8%</td>
<td>16.8%</td>
<td>0.106</td>
<td>-54.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel 2: Standard dynamically rebalanced portfolios</th>
<th>Annualized return</th>
<th>Annualized standard deviation</th>
<th>Sharpe ratio (RF=0)</th>
<th>Max drawdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equally weighted</td>
<td>5.2%</td>
<td>8.2%</td>
<td>0.638</td>
<td>-23.0%</td>
</tr>
<tr>
<td>Equal Risk Contribution</td>
<td>4.5%</td>
<td>4.7%</td>
<td>0.954</td>
<td>-10.0%</td>
</tr>
<tr>
<td>Minimum Variance</td>
<td>4.6%</td>
<td>4.1%</td>
<td>1.137</td>
<td>-5.4%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel 3: Risk factor constrained minimum variance portfolios</th>
<th>Annualized return</th>
<th>Annualized standard deviation</th>
<th>Sharpe ratio (RF=0)</th>
<th>Max drawdown</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCP1</td>
<td>3.5%</td>
<td>5.9%</td>
<td>0.593</td>
<td>-17.8%</td>
</tr>
<tr>
<td>RFCP2</td>
<td>5.1%</td>
<td>4.3%</td>
<td>1.183</td>
<td>-6.4%</td>
</tr>
<tr>
<td>RFCP3</td>
<td>4.8%</td>
<td>4.7%</td>
<td>1.040</td>
<td>-8.6%</td>
</tr>
</tbody>
</table>
Application 1: Risk monitoring and ex-post portfolio risk analysis

The first application of factor risk budgets is the ex-post analysis of the risk concentration of the portfolio. The risk analysis is done for the following three portfolios:

- The equally weighted portfolio: each of the four assets is attributed a 25% portfolio weight;
- The equal risk contribution portfolio: each asset contributes to 25% of the portfolio risk;
- The minimum variance portfolio: portfolio weights are such that the portfolio variance is minimal, under the constraint of full investment and no short sales.

The covariance matrix is estimated on rolling samples of 24 (quarterly) observations. The out-of-sample analysis period corresponds to August 2006-December 2012 and portfolios are rebalanced on a quarterly frequency.

The average portfolio weights over this period are reported in Table 1. Note that the equal risk contribution and minimum variance portfolios are concentrated in government bonds and have a relatively lower allocation to the more risky high yield bonds and the equity index.

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Equally Weighted</th>
<th>Equal Risk Contribution</th>
<th>Minimum Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government bonds</td>
<td>0.25</td>
<td>0.50</td>
<td>0.52</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>0.25</td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>High yield bonds</td>
<td>0.25</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>Equity</td>
<td>0.25</td>
<td>0.08</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 1 Average quarterly weight allocation of equally weighted, equal risk contribution and minimum variance portfolio invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.

Panel 2 of Table 2 shows the portfolio performance of these three dynamic asset allocation strategies, compared to the single-asset alternatives in panel 1 of Table 2. The differences in portfolio weights translate directly in the portfolio volatility, whereby the (annualized) volatility of the equal risk contribution portfolio (4.7%) is in between the volatility of the minimum variance portfolio (4.1%) and the equally weighted portfolio (8.2%). The annualized return of the three portfolios is around 5%.
Let us now focus on the key question, namely the attribution of the portfolio volatility to the percentage volatility caused by the assets (yielding the percentage asset risk contributions) and the distribution of the percentage volatility across the different risk factors (yielding the percentage factor risk contributions).

The percentage volatility contributions of each asset are reported in Table 3. Comparing the equal risk contribution and minimum variance portfolios, we see that increasing the weight of the high yield bonds from 1% to 10% and of equity from 3% to 8% has a large impact on the percentage volatility contributions of those assets, which increase sharply from 1 and 3% to 25%, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Equally Weighted</th>
<th>Equal Risk Contribution</th>
<th>Minimum Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government bonds</td>
<td>-0.01</td>
<td>0.25</td>
<td>0.52</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>0.06</td>
<td>0.25</td>
<td>0.44</td>
</tr>
<tr>
<td>High yield bonds</td>
<td>0.42</td>
<td>0.25</td>
<td>0.01</td>
</tr>
<tr>
<td>Equity</td>
<td>0.53</td>
<td>0.25</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table 3 Average quarterly asset-based risk allocation of equally weighted, equal risk contribution and minimum variance portfolio invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.

The percentage volatility contribution of each factor is shown in Table 4.

<table>
<thead>
<tr>
<th></th>
<th>Equally Weighted</th>
<th>Equal Risk Contribution</th>
<th>Minimum Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>0.20</td>
<td>0.19</td>
<td>0.11</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.12</td>
<td>0.12</td>
<td>0.19</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.11</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>Currency</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Credit risk</td>
<td>0.16</td>
<td>0.09</td>
<td>0.07</td>
</tr>
<tr>
<td>Market risk</td>
<td>0.10</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Percentage risk contribution by all macrofinancial risk factors</td>
<td>69%</td>
<td>57%</td>
<td>48%</td>
</tr>
<tr>
<td>Idiosyncratic government bonds factor</td>
<td>0.01</td>
<td>0.18</td>
<td>0.27</td>
</tr>
<tr>
<td>Idiosyncratic corporate bonds factor</td>
<td>0.01</td>
<td>0.08</td>
<td>0.22</td>
</tr>
<tr>
<td>Idiosyncratic high yield bonds factor</td>
<td>0.13</td>
<td>0.08</td>
<td>0.01</td>
</tr>
<tr>
<td>Idiosyncratic equity factor</td>
<td>0.16</td>
<td>0.09</td>
<td>0.02</td>
</tr>
<tr>
<td>Percentage risk contribution by all idiosyncratic risk factors</td>
<td>31%</td>
<td>43%</td>
<td>51%</td>
</tr>
</tbody>
</table>

Table 4 Average quarterly factor-based risk allocation of equally weighted, equal risk contribution and minimum variance portfolio invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.
As could be intuitively expected, the volatility of the equally weighted portfolio being 25% invested in all assets is explained by all factors, except currency. The idiosyncratic government and corporate bonds factors have negligible impact, in contrast with the idiosyncratic high yield bonds and equity factors that explain 13% and 16% of the volatility of the equally weighted portfolio.

The equal risk contribution and the minimum variance portfolio have a much lower exposure to the European high yield bond and equity asset classes. As a consequence, these portfolios have a higher exposure to the idiosyncratic government and corporate bond factors. In particular, for the equal risk contribution portfolio 18% and 8% of portfolio volatility are explained by the government and corporate bonds factors, and for the minimum variance portfolios, these factors explain 27% and 22% respectively.

For all portfolios, the economic activity, inflation and interest rate factors are the three most important macro-economic contributors to the portfolio volatility. Jointly, the macro-economic factors explain 69% of the volatility of the equally weighted portfolio, 57% of the volatility of the equal risk contribution portfolio and 48% of the minimum variance portfolio volatility.

Application 2: Ex-ante factor risk constraints in portfolio allocation

An important shortcoming of the minimum variance portfolio in this application is that only three factors are responsible for 68% of the total portfolio volatility: inflation (19%), idiosyncratic government bonds factor (27%) and the idiosyncratic corporate bonds factor (22%). We now investigate the interesting application of implement factor risk budgets that restrict ex-ante the risk contributions of the different factors. To illustrate this, we consider following risk factor constrained minimum variance portfolios:

- [RFCP1] Minimum variance portfolio under the constraint that the maximum percentage factor risk contribution is less than 20%.
- [RFCP2] Minimum variance portfolio under the constraint that the maximum percentage idiosyncratic factor risk contribution is less than 20%.
- [RFCP3] Minimum variance portfolio under the constraint that the maximum asset return percentage contribution is less than 30% and the maximum percentage factor risk contribution is less than 20%.

Tables 5-7 show the corresponding weight and risk allocations, while the out-of-sample return performance is in Panel 3 of Table 1.
<table>
<thead>
<tr>
<th>Iteration</th>
<th>RFCP1</th>
<th>RFCP2</th>
<th>RFCP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government bonds</td>
<td>0.44</td>
<td>0.47</td>
<td>0.48</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>0.33</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>High yield bonds</td>
<td>0.09</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Equity</td>
<td>0.14</td>
<td>0.05</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Table 5 Average quarterly weight allocation of risk factor constrained portfolios invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>RFCP1</th>
<th>RFCP2</th>
<th>RFCP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government bonds</td>
<td>0.17</td>
<td>0.35</td>
<td>0.23</td>
</tr>
<tr>
<td>Corporate bonds</td>
<td>0.30</td>
<td>0.46</td>
<td>0.27</td>
</tr>
<tr>
<td>High yield bonds</td>
<td>0.14</td>
<td>0.10</td>
<td>0.23</td>
</tr>
<tr>
<td>Equity</td>
<td>0.38</td>
<td>0.10</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 6 Average asset-based risk allocation of risk factor constrained portfolios invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.

<table>
<thead>
<tr>
<th>Iteration</th>
<th>RFCP1</th>
<th>RFCP2</th>
<th>RFCP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>0.16</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.10</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.12</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Currency</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Credit risk</td>
<td>0.12</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Market risk</td>
<td>0.06</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Percentage risk contribution by all macrofinancial risk factors</td>
<td>56%</td>
<td>53%</td>
<td>57%</td>
</tr>
<tr>
<td>Idiosyncratic government bonds factor</td>
<td>0.13</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>Idiosyncratic corporate bonds factor</td>
<td>0.13</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Idiosyncratic high yield bonds factor</td>
<td>0.05</td>
<td>0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Idiosyncratic equity factor</td>
<td>0.13</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>Percentage risk contribution by all idiosyncratic risk factors</td>
<td>44%</td>
<td>47%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Table 7 Average factor-based risk allocation of risk factor constrained minimum variance portfolios invested in EU government bonds, corporate bonds, high yield bonds and equity over the period August 2006-December 2012. Portfolios are rebalanced quarterly.
Let’s first consider the RFCP1 portfolio. Remember that the minimum variance portfolio without risk factor constraints is 52% invested in government bonds and 44% in corporate bonds. By imposing that the maximum percentage factor risk contribution should be less than 20%, an important diversification is achieved, at the portfolio weight level (44% is invested in corporate bonds and 33% in government bonds), the asset risk contribution level (the maximum risk contribution drops from 52% to 44%) and the factor risk contribution, where the upper bound of 20% is clearly binding. This increase in diversification is accompanied by a decrease in return (4.6% to 3.5%), an increase in volatility (4.1% to 5.9%) and an important increase in the maximum drawdown (-5.4% to -17.8%).

For the RFCP1 portfolio, the maximum 20% constraint on all risk factors is clearly too restrictive and does not strike a balance between the objectives of high return, low risk and high diversification across both assets and risk factors.

In the RFCP2 portfolio, the maximum 20% percentage factor risk contribution constraint is only imposed on the idiosyncratic factors and the resulting portfolio weight and risk allocation is in between the unconstrained minimum variance portfolio and the RFCP1 portfolio. The maximum 20% bound constraint is binding for the idiosyncratic government and corporate bond factors. The RFCP2 portfolio has a higher Sharpe ratio (1.183) compared to the Sharpe ratio of the minimum variance portfolio (1.137) and a comparable maximum drawdown.

The RFCP2 portfolio risk is well diversified across all risk factors, but at the asset class level, the RFCP2 portfolio risk is concentrated in the corporate (46%) and government bonds (35%). Imposing only constraints on the risk contributions of the risk factors therefore fails in guaranteeing a sufficient risk diversification across the asset classes.

We therefore consider as a final design the RFCP3 portfolio that has constraints on the risk contribution of the assets and the risk factors. More precisely, the RFCP3 portfolio combines a maximum 20% percentage factor risk contribution constraint on the idiosyncratic factors with a maximum 30% percentage risk contribution on each of the assets. This portfolio loads significantly less on the corporate bond (portfolio weight reduces from 44% to 35%) and more on high yield bonds (8% instead of 4%) and equity (9% instead of 5%). Its performance in terms of return and risk is comparable (and even slightly better) to the performance of the equal risk contribution portfolio.
Conclusion

A mere analysis of the component risk contributions of the portfolio assets is insufficient to uncover the risk factor concentrations of the portfolio. The decision on the risk the portfolio manager is willing to take should be done at different aggregation levels, among which the level of the asset and factor percentage risk contributions.

Based on Meucci (2007) and Zivot (2011) we consider a methodology to do so in a computationally simple and transparent way. The proposed two step approach combines shrinkage estimation of the exposures and covariance matrices, with the usual percentage risk calculation based on the Euler expansion.

We apply the methodology to the case of a diversified asset allocation portfolio invested in EU government bonds, EU corporate bonds, EU high yield bonds and European equity. We first illustrate the usefulness of the tool for ex-post risk analysis and then analyse the impact of ex-ante risk factor constraints on the portfolio allocation. In our application, it is possible to achieve simultaneously a high diversification at the asset level and risk factor level, while still offering comparable (and even slightly better) performance than the equal risk contribution approach that allocates the portfolio risk equally across asset classes.
Acknowledgements

The authors would like to thank David Ardia, François Bertrand, Peter Carl, Jorn De Boeck, Brian Peterson and Eric Zivot.

REFERENCES

FINVEX WHITE PAPER SERIES

June 2013 – Asset allocation with risk factors.

January 2013 – Smart harvesting of equity style premia.

September 2012 – Dynamic risk based asset allocation.

April 2012 - Risk optimised investing in equity markets.

November 2011 – Risk optimized investment.

Available at: http://www.finvex.com/eng/publications.php